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Abstract
Background  While the phenotypic link between body mass index (BMI) and some female reproductive disorders is 
well established, the genetic architecture and causal relationships have not been systematically studied. We aimed 
to create an atlas of the shared genetic associations of BMI and 16 female reproductive disorders and to identify their 
common risk loci, biological pathways, and potential mechanisms.

Methods  We assessed the genetic correlations between BMI and 16 reproductive disorders using summary data 
from large-scale genome-wide association studies. Cross-trait pleiotropic analysis identified shared loci and genes, 
while functional annotation and tissue-specific analysis revealed relevant biological pathways and tissues. Multi-trait 
colocalization analysis examined the role of hormones and metabolites in these traits. Additionally, bidirectional 
Mendelian randomization (MR) analysis was employed to assess causal relationships between BMI and reproductive 
outcomes. We also conducted summary data-based MR (SMR) analysis to identify potential drug targets.

Results  Our results revealed a significant genetic correlation between BMI and eight female reproductive diseases. 
Furthermore, we identified 50 shared pleiotropic loci between BMI and these traits, with 21 of them showing 
significant colocalization, suggesting a complex shared genetic architecture across the genome. In addition, the 
top biological pathways and tissues enriched with these pleiotropic loci were associated with RNA metabolism, 
macromolecule biosynthesis, type B pancreatic cell apoptosis, various brain regions, and the pituitary. Moreover, 
multi-trait colocalization indicated that insulin, lipid metabolites, glucose, glycine, and glutamine mediate shared 
mechanisms between BMI, gestational diabetes mellitus (GDM), and endometrial cancer. MR analysis suggested 
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Introduction
The prevalence of obesity has been steadily increasing 
worldwide, with alarmingly high rates observed in both 
developed and developing nations [1]. This trend is par-
ticularly concerning for women of reproductive age, as 
observational epidemiological studies have revealed that 
excess body weight is associated with various adverse 
reproductive outcomes, including infertility, menstrual 
irregularities, pregnancy complications, and even gyne-
cological cancers [2–6]. Moreover, underweight women 
also have an increased risk of infertility and recurrent 
miscarriages [7]. Body mass index (BMI), a common 
measure of adiposity, is widely used in epidemiologi-
cal and clinical research as a key tool for assessing obe-
sity and its related health risks [8, 9]. Numerous studies 
have demonstrated that BMI can serve as a predictor of 
risk for female reproductive disorders. In a multicenter 
prospective cohort study, researchers found that women 
with a BMI ≥ 25  kg/m² had nearly double the risk of 
developing gestational diabetes mellitus (GDM) during 
pregnancy compared to those with a BMI < 25 kg/m² [10]. 
Additionally, a case-control study revealed that women 
with a BMI > 30 kg/m² had a significantly increased risk 
of endometrial cancer (EC), with an odds ratio (OR) as 
high as 4.08 [11].

Obesity is significantly influenced by genetic factors, 
with heritability estimates ranging from 40 to 70% [12]. 
BMI, a key indicator of obesity and related health risks, 
has garnered increasing attention for its genetic basis. 
Over the past decade, genome-wide association stud-
ies (GWAS) have identified approximately 150 genetic 
loci associated with BMI, offering critical insights into 
the genetic mechanisms underlying obesity [13]. Female 
reproductive disorders have unclear heritability esti-
mates, and their genetic underpinnings remain poorly 
understood due to the complexity of these diseases and 
the challenges in obtaining comprehensive genetic data. 
Nevertheless, recent advances have begun to uncover 
important genetic factors of these diseases. For instance, 
a large twin study of over 3,100 Dutch twins found 92 
cases of polycystic ovary syndrome (PCOS) and reported 
that 72% of the variance in PCOS risk is attributable to 
genetic factors, with a monozygotic twin correlation of 

0.72 (r²) and a dizygotic twin correlation of 0.38 (r²), high-
lighting the significant genetic contribution to this con-
dition [14]. Moreover, the genetic associations between 
BMI and female reproductive diseases have garnered 
increasing attention and validation. Jiang et al. conducted 
a large-scale genomic analysis revealing significant 
genetic links between BMI and PCOS, identifying sev-
eral shared genetic loci [15]. Similarly, genetic variations 
in BMI have been closely associated with the risk of EC. 
Hazelwood et al. demonstrated a significant causal rela-
tionship between BMI and the risk of EC, showing that 
each standard deviation increase in BMI corresponded to 
a 1.88-fold increase in risk [16]. In addition, Prescott et 
al. found that the genetic risk score of BMI is statistically 
associated with the risk of endometrial cancer, with each 
additional 10 BMI-related risk alleles increasing the risk 
of developing EC by 13% [17]. The genetic susceptibil-
ity to gestational hypertensive diseases and GDM is also 
linked to BMI variations. Specifically, the T allele (CT 
genotype) of the AVP rs3729965 polymorphism [18] and 
the A allele of the AGTR2 C4599A polymorphism [19] 
were found to increase the risk of preeclampsia in preg-
nant women with a BMI ≥ 25 kg/m². Furthermore, several 
genetic studies have shown that higher genetically pre-
dicted BMI is significantly associated with an increased 
risk of GDM [20]. Finally, BMI-related genetic variations 
are also closely associated with the incidence of uterine 
fibroids (UFs). In Korean women with a BMI greater than 
25  kg/m², the A allele and AA genotype of a polymor-
phism (G870A) in cyclin D1 significantly increased the 
risk of UFs (OR = 3.61) [21]. These observed epidemio-
logical genetic studies provide valuable insights into the 
comorbidities of BMI and certain female reproductive 
disorders. However, the extent to which various female 
reproductive diseases and BMI share common genetic 
underpinnings remains uncertain.

In this study, we began by assessing the genetic cor-
relation between BMI and 16 female reproductive dis-
eases using large-scale GWAS summary data. Next, we 
performed a cross-trait pleiotropic analysis to identify 
shared loci that could serve as potential intervention 
targets for the simultaneous prevention or treatment of 
these conditions. Moreover, pathway enrichment, tissue 

BMI may cause several reproductive diseases, with only GDM affecting BMI reversely. Finally, SMR analysis revealed 
EIF2S2P3 and MCM6, which may have a causative effect on both BMI & GDM and BMI & gestational hypertension.

Conclusion  Our results suggest a significant genetic link between BMI and eight female reproductive diseases, 
highlighting a shared and causal genetic basis. Reducing BMI in women may serve as an effective strategy to lower 
the risk of female reproductive disorders. The identified pleiotropic loci, genes, and shared pathways could provide 
new therapeutic targets for both obesity and reproductive diseases, along with their comorbidities.

Clinical trial number  Not applicable.

Keywords  Body mass index, Female reproductive disorders, Genetic architecture, Hormones, Metabolites
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enrichment, and multi-trait colocalization analyses were 
conducted to explore the potential mechanism behind 
the genetic correlation of BMI and these female repro-
ductive diseases. Finally, we performed bidirectional 
two-sample MR and summary data-based MR (SMR) 
analyses to investigate the causal association and shared 
functional genes between BMI and female reproductive 
diseases. Our study may provide new insights into the 

underlying genetic mechanisms and lay the foundation 
for effective interventions to protect women’s reproduc-
tive health. The study flowchart is displayed in Fig. 1.

Methods
Data source
We included 16 female reproductive disorders, with 
GWAS data for 13 of these sourced from the FinnGen 

Fig. 1  The overall design followed in the study is shown. BMI, body mass index; PCOS, polycystic ovary syndrome; GDM, gestational diabetes mellitus; GH, 
gestational hypertension; PE, pre-eclampsia or eclampsia; EC, endometrial cancer; EnOC, endometrioid ovarian cancer; SAB, spontaneous abortion; UFs, 
uterine fibroids, UPs, uterine polyps; ICP, intrahepatic cholestasis of pregnancy; FGR, poor fetal growth, PPH, postpartum hemorrhage, PTB, preterm labor 
and delivery; LDSC, linkage disequilibrium score regression; HDL, high-definition likelihood; PLACO, pleiotropic analysis under composite null hypothesis; 
MAGMA, multimarker analysis of GenoMic annotation; COLOC, colocolization analysis; SMR, summary-data based Mendelian randomization; HyPrColoc, 
Hypothesis Prioritization Colocalization. TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; FSH, follicle-stimulating hor-
mone; LH, luteinizing hormone; GH, growth hormone; and PRL, prolactin
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R11 database (https://www.finngen.fi/en), including UFs, 
PCOS, GDM, endometriosis, female infertility, uterine 
polyps (UPs), spontaneous abortion (SAB), gestational 
hypertension (GH), intrahepatic cholestasis of pregnancy 
(ICP), poor fetal growth (FGR), postpartum hemorrhage 
(PPH), pre-eclampsia or eclampsia (PE), and preterm 
labor and delivery (PTB). For endometrial cancer (EC), 
we utilized GWAS data from the study by O’Mara et al. 
[22]; for endometrioid ovarian cancer (EnOC), data from 
the study by Phelan et al. [23]; and for menorrhagia, data 
from the study by Gallagher et al. [24]. All reproduc-
tive disorders were treated as binary traits. The detailed 
information of these datasets, including the source of the 
GWAS data, sample size, and case definitions, is summa-
rized in Table S1.

We used the largest GWAS on female BMI to date, 
which is a meta-analyzed data from the UK Biobank and 
the GIANT consortium, involving approximately 700,000 
individuals of European ancestry, including 434,794 
females with BMI data. The procedures for sample col-
lection, quality control, and imputation have been thor-
oughly outlined in earlier publications [25, 26].

To ensure the accuracy of the GWAS data, we applied 
strict quality control measures in this study. First, we 
excluded SNPs in the major histocompatibility complex 
(MHC) region (25–35 Mb on chromosome 6) due to its 
complex gene structure and high linkage disequilibrium, 
which can lead to false positives. Additionally, we filtered 
out rare variants by retaining only SNPs with a minor 
allele frequency (MAF) above 0.01, focusing on common 
variants to enhance statistical power and reduce false 
positives.

Cross-trait genetic correlation at the genome-wide level
Linkage Disequilibrium Score (LDSC) is a statistical 
method used to estimate heritability and genetic correla-
tion from GWAS summary data. In the LDSC analysis, 
LD scores were computed using common SNPs from 
European ancestry samples in the 1000 Genomes Project 
[27]. We conducted the LDSC genetic correlation analy-
sis to calculate the shared genetic factors between BMI 
and the 16 female reproductive disorders, by dividing the 
shared genetic variance by the square root of the prod-
uct of the heritability estimates for both traits. Notably, 
there was no significant population overlap between the 
GWAS data on female reproductive diseases and BMI, 
enhancing the reliability of our findings. Moreover, we 
utilized a likelihood-based method known as high-defi-
nition likelihood (HDL) to estimate genetic associations 
using GWAS summary statistics. This method enabled a 
reduction in the variance of genetic association estimates 
by approximately 60% compared to LDSC [28]. To avoid 
false positives, Bonferroni correction was implemented 

on all p-values, with the significance threshold set at 
p < 0.003 = 0.05/16.

Identification of pleiotropic loci
Using GWAS summary statistics, pleiotropic analy-
sis under the composite null hypothesis (PLACO) was 
applied to identify pleiotropic loci across phenotypes 
[29]. Variants were scored based on squared Z values, 
with those exceeding Z² > 80 excluded. To account for 
potential trait correlations, the Z correlation matrix was 
calculated and incorporated. The hypothesis of no pleiot-
ropy was tested using the level-α cross-over-unit method, 
yielding the final pleiotropy P value. Significant pleio-
tropic variants were defined as those with P < 5 × 10⁻⁸ for 
single-nucleotide variants. Furthermore, to further vali-
date the biological significance of these pleiotropic SNPs, 
we utilized the functional mapping and annotation tool 
(FUMA) to map these risk variants to specific genomic 
regions (i.e., risk loci), thereby providing an in-depth 
understanding of the potential functions of these variants 
[30]. Subsequently, to identify risk loci shared by BMI 
and major female reproductive diseases, we conducted 
a Bayesian colocalization analysis, assessing posterior 
probabilities across five hypotheses: the null hypothesis 
of no association with either trait; H1, association with 
trait 1 only; H2, association with trait 2 only; H3, inde-
pendent associations with each trait; and H4, a shared 
association signal for both traits. Colocalization was 
determined if the posterior probability for H4 (PP.H4) 
exceeded 0.70 [31].

Functional analysis for pleiotropic genes
To investigate the shared mechanisms of the identi-
fied loci, we utilized multi-marker analysis of genomic 
annotation (MAGMA) to map genes near lead SNPs 
within each locus and assess their biological functions 
[32]. Specifically, MAGMA gene analysis was con-
ducted to identify pleiotropic genes by accounting for 
LD between markers and detecting multi-marker effects 
(P < 2.730 × 10–6 = 0.05/18,345). We further performed 
MAGMA gene-set analysis to evaluate the biologi-
cal functions of lead SNPs, testing 10,678 curated gene 
sets and Gene Ontology (GO) terms from the Molecu-
lar Signatures Database (MSigDB) (P < 4.680 × 10⁻⁶ = 
0.05/10,678 after Bonferroni correction) [33]. Addition-
ally, genome-wide tissue-specific enrichment analysis 
was performed across 54 GTEx tissues using PLACO 
results to pinpoint tissues with significant heritability 
enrichment [34].

Multitrait colocalization analysis
Our pathway and tissue enrichment analyses reveal that 
pleiotropic loci are predominantly associated with bio-
synthetic and metabolic processes, exhibiting significant 

https://www.finngen.fi/en
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enrichment in tissues such as the hypothalamus, pituitary 
gland, and ovaries. Therefore, we applied the Hypothesis 
Prioritization Colocalization (HyPrColoc) method [35] 
to conduct multi-trait colocalization analysis, identifying 
the roles of eleven hormone levels and 168 metabolites in 
the genetic correlation between BMI and female repro-
ductive disorders. HyPrColoc, a computationally effi-
cient alternative to moloc, facilitates the colocalization 
of numerous traits. Using data from 121,000 European 
ancestry participants provided by Nightingale Health, 
we included 168 metabolites whose absolute concentra-
tions were measured by nuclear magnetic resonance for 
HyPrColoc analysis [36]. These metabolites primarily 
include lipids and lipoprotein sub-fractions (81%), along 
with amino acids, cholesterol (free and esterified), cho-
lines, fatty acids, glycolysis-related metabolites, ketone 
bodies, phospholipids, lipoprotein particle sizes, apoli-
poproteins, and triglycerides. For hormones, we included 
fasting insulin, follicle-stimulating hormone (FSH), 
luteinizing hormone (LH), estradiol, testosterone, thyroid 
stimulating hormone (TSH), free triiodothyronine (FT3), 
free thyroxine (FT4), cortisol, growth hormone (GH), 
and prolactin (PRL). Detailed information on the GWAS 
summary datasets for the eleven hormones and 168 
metabolites has been added to Table S1. Colocalization 
was carried out using the hyprcoloc function’s default 
settings, which included a prior probability of initial trait 
association of 0.0001 and a conditional probability of 
subsequent trait sharing association of 0.02.

Bidirectional Mendelian randomization analysis
MR analysis is commonly used to infer causal relation-
ships between an exposure and an outcome, utilizing 
exposure-related SNPs as instrumental variables. In 
our MR analysis, we set the linkage disequilibrium (LD) 
threshold at 0.001 and the physical distance threshold 
at 10  Mb for selecting clusters. For BMI as the expo-
sure variable, we applied a p-value threshold of 5 × 10⁻⁸. 
Additionally, F statistics (F = beta²/se²) were calculated 
for each SNP to assess statistical power. In addition, to 
reduce the impact of horizontal pleiotropy, each SNP 
was individually analyzed in the LDtrait human geno-
type-phenotype databases [37] using the “EUR” popula-
tion data, an R² threshold of 0.5, and a 500 kb base pair 
window. We mainly conducted inverse variance weighted 
(IVW) meta-analysis, MR Egger regression analysis, 
and weighted median to determine whether BMI has a 
causal impact on different adverse female reproductive 
outcomes. Sensitivity analyses were conducted to assess 
the robustness of the results. Cochran’s Q test was used 
to examine heterogeneity among the SNPs in each anal-
ysis. The MR-Egger regression intercept test was also 
applied to detect horizontal pleiotropy. Additionally, 
bidirectional MR analysis was performed with female 

reproductive diseases as the exposure variable to exclude 
reverse causality.

Summary data-based Mendelian randomization (SMR)
The SMR method integrates summary-level GWAS 
data with expression quantitative trait loci (eQTL) data 
to identify genes whose expression is linked to complex 
traits through pleiotropy [38]. We conducted SMR and 
Heterogeneity of Causal Instruments (HEIDI) test using 
summary-level data from GWAS and eQTL studies to 
examine causal associations between gene expression 
levels and the complex traits of interest. The risk genes 
with causal effects were determined through our analysis, 
with validation from both the Benjamini-Hochberg test 
(P < 0.05) and the HEIDI-outlier test (P > 0.05).

Software and packages
The main statistical analysis was conducted in R (version 
4.3.3). LDSC analysis was carried out using the “LDSC” 
software (v1.0.1), and PLACO analysis was performed 
with the “PLACO” package. Bayesian colocalization anal-
ysis was done using the “coloc” package (version 5.2.3), 
while multi-trait colocalization analysis was performed 
with the “hyprcoloc” package (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​j​r​s​9​​5​/​​
h​y​p​r​c​o​l​o​c). Functional analysis was carried out using the 
FUMA web tool. MAGMA gene and gene-set analysis 
were performed with MAGMA software. Bidirectional 
MR was conducted using the “TwoSampleMR” package 
(version 0.6.8).

Results
Genetic correlations between BMI and female reproductive 
disorders
We assessed the genetic correlation between BMI and 
16 female reproductive disorders, finding highly con-
sistent results from both the bivariate LDSC and HDL 
methods. Specifically, we identified seven traits geneti-
cally correlated with BMI using LDSC: GDM (rg = 0.448, 
P = 5.876E-40), GH (rg = 0.308, P = 1.721E-24), PE (rg = 
0.328, P = 1.566E-19), SAB (rg = 0.209, P = 4.380E-04), 
PCOS (rg = 0.323, P = 1.756E-13), Menorrhagia (rg = 
0.313, P = 7.939E-13), and EC (rg = 0.488, P = 3.632E-25) 
(Table  1). The HDL method also revealed significant 
genetic correlations between BMI and various female 
reproductive diseases, including GDM (rg = 0.554, 
P = 8.580E-18), GH (rg = 0.353, P = 1.330E-23), PE (rg = 
0.377, P = 4.030E-17), PCOS (rg = 0.669, P = 2.760E-3), 
Menorrhagia (rg = 0.307, P = 5.790E-12), EC (rg = 0.411, 
P = 2.520E-34), and EnOC (rg = 0.134, P = 1.840E-02) 
(Table 1). Together, these two methods led to a final set 
of eight pairwise traits for further analysis. Additionally, 
it is worth noting that apart from EnOC, other reproduc-
tive traits remained significantly genetically correlated 

https://github.com/jrs95/hyprcoloc
https://github.com/jrs95/hyprcoloc
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with BMI risk after applying the Bonferroni correction 
(P < 0.003 = 0.05/16).

Shared loci between BMI and female reproductive 
disorders
Through PLACO analysis, we identified 422 potential 
polymorphic SNPs (P < 5 × 10⁻⁸) in the pairings between 
BMI and eight female reproductive traits (SAB, EC, 
EnOC, GDM, GH, Menorrhagia, PCOS, and PE) (Table 
S2). Based on these SNPs, the FUMA analysis uncovered 
50 independent genomic risk loci with pleiotropic effects, 
comprising 23 novel loci and 27 previously reported loci 
(Table S3). According to the GWAS catalog, these known 
loci are primarily associated with traits such as BMI, met-
abolic syndrome, obesity, diabetes, and abnormal body 
fat distribution (Tables S4). Moreover, the 50 pleiotro-
pic SNPs are located in 41 unique chromosomal regions 
(Table S3). Multiple pleiotropic regions exist among vari-
ous trait pairs. For example, 16p11.2 was found in both 
BMI & EnOC and BMI & EC, 11p15.4 in BMI & GH and 
BMI & PE, 1p31.1 in BMI & GH and BMI & GDM, and 
8p23.1 in BMI & GH, BMI & PE, and BMI & SAB (Table 
S5). Furthermore, Bayesian colocalization analysis finally 
identified 21 of 50 (42.0%) potential pleiotropic loci with 
PP.H4 greater than 0.7 (Table 2 and Table S3).

Pleiotropic gene enrichment analysis
MAGMA analysis identified 936 significant pleiotropic 
genes shared between BMI and female reproductive dis-
orders (Table S6). Sixteen genes, including ANKRD55, 
BLK, C11orf80, DNAJC5, FAM216A, GDN3, HCVN1, 
LTBP3, MSRA, NR1H3, PPTC7, SORT1, TCTN1, UBA7, 

VPS29, and WEE1, were confirmed across multiple trait 
pairs (e.g., BMI with EnOC, GH, EC, SAB, GDM, and 
PE) (Table S6), demonstrating their pleiotropic effects. 
Pathway enrichment analysis suggested that the identi-
fied pleiotropic genes may participate in controlling the 
biosynthetic processes, RNA biosynthetic and metabolic 
processes, PTEN regulation pathway, gastrin signaling 
pathway, type B pancreatic cell apoptotic process, and 
various other processes (Fig. 2A and Table S7). In addi-
tion, tissue enrichment analysis found these pleiotro-
pic loci were enriched in several tissues (e.g., different 
regions of the brain, hypothalamus, pituitary, and ovary) 
(Fig. 2B and Table S8).

Metabolite and hormone‑related mechanisms shared 
between BMI and female reproductive diseases
The pathway and tissue enrichment analysis highlighted 
metabolic and biosynthetic pathways, along with key tis-
sues such as the hypothalamus and pituitary, suggesting 
a critical role of endocrine and metabolic processes in 
the interplay between BMI and these diseases. Hence, we 
conducted the multi-trait colocalization analysis using 
HyPrColoc. The results highlighted seven pleiotropic 
SNPs (rs12602912, rs13083375, rs7713317, rs1899951, 
rs7550711, rs891387, and rs1801282), which are associ-
ated with 53 unique hormones and metabolites. These 
SNPs shared causal variants with posterior probability 
(PP) > 0.7 in both BMI & GDM and BMI & EC, support-
ing the role of these hormones and metabolites in the 
two relationships (Table  3 and Table S9). The 53 hor-
mones and metabolites belong to 13 panels: hormones, 
glycolysis, amino acids, size & Apo-LP, cholesterol, 

Table 1  Genetic correlation between BMI and female reproductive disorders
Trait pairs LDSC HDL

rg (SE) p value rg (SE) p value
BMI & GDM 0.448 (0.034) 5.876E-40* 0.554 (0.065) 8.580E-18*
BMI & GH 0.308 (0.030) 1.721E-24* 0.353 (0.035) 1.330E-23*
BMI & PE 0.328 (0.036) 1.566E-19* 0.377 (0.045) 4.030E-17*
BMI & ICP 0.003 (0.036) 9.350E-01 0.013 (0.034) 6.980E-01
BMI & FGR -0.044 (0.054) 4.108E-01 -0.086 (0.069) 2.080E-01
BMI & SAB 0.209 (0.059) 4.380E-04* 0.427 (0.226) 5.870E-02
BMI & PTB 0.069 (0.038) 7.023E-02 0.089 (0.060) 1.380E-01
BMI & PPH 0.085 (0.056) 1.279E-01 0.083 (0.071) 2.440E-01
BMI & Infertility 0.027 (0.036) 4.539E-01 -0.007 (0.042) 8.690E-01
BMI & PCOS 0.323 (0.044) 1.756E-13* 0.669 (0.223) 2.760E-03
BMI & Menorrhagia 0.313 (0.044) 7.939E-13* 0.307 (0.045) 5.790E-12*
BMI & UPs -0.076 (0.107) 4.753E-01 -Inf (NA) NA
BMI & UF 0.023 (0.023) 3.001E-01 0.022 (0.023) 3.460E-01
BMI & Endometriosis 0.013 (0.025) 6.034E-01 -3e-04 (0.026) 9.900E-01
BMI & EC 0.488 (0.047) 3.632E-25* 0.411 (0.034) 2.520E-34*
BMI & EnOC 0.094 (0.073) 1.990E-01 0.134 (0.057) 1.840E-02
Abbreviations: BMI, body mass index; PCOS, polycystic ovary syndrome; GDM, gestational diabetes mellitus; GH, gestational hypertension; PE, pre-eclampsia 
or eclampsia; EC, endometrial cancer; EnOC, endometrioid ovarian cancer; SAB, spontaneous abortion. * represents traits that pass the Bonferroni correction 
(p = 0.003 < 0.05/16)
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triglycerides, free cholesterol, phospholipids, lipopro-
tein particles, total lipids, fatty acids, compounds, and 
esterified cholesterol. Among them, 45 hormones and 
metabolites are associated with BMI and EC, all influ-
enced by rs12602912; 21 hormones and metabolites 
are associated with BMI and GDM, mainly affected by 
rs13083375, rs7713317, rs1899951, rs7550711, rs891387, 
and rs1801282. Additionally, lipid metabolites constitute 
the largest proportion (49/53 = 92.5%) of the 53 unique 
hormones and metabolites. Insulin, with the highest 
posterior probability, was significantly colocalized with 
both BMI and GDM (PP = 0.932), as well as BMI and EC 
(PP = 0.906). Glucose also showed a significant genetic 
association between BMI and GDM (PP = 0.892), with 
rs7717348 affecting these associations. In addition, gly-
cine and glutamine exhibited significant relationships 
with both BMI and GDM, which is influenced by the risk 
loci rs4684847 (Table 3).

The causal relationship between BMI and female 
reproductive disorders
In addition to pleiotropy, we also aimed to determine 
whether the genetic correlation is related to causal-
ity. Therefore, we investigated the putative causal link 
between BMI and eight female reproductive disor-
ders, which displayed a significant genetic correla-
tion in LDSC and HDL analysis. To obtain more robust 
results, we used bidirectional MR estimation method. All 
genetic instruments used in the MR analysis are listed 

in Table S10 and were deemed robust instruments, with 
F-statistics greater than 10. Sensitivity analysis did not 
detect pleiotropy (PMR−Egger > 0.05). For those with het-
erogeneity (PCochran’s Q < 0.05), we used the weighted 
median method or inverse variance weighting (IVW). 
As a result, we found that BMI was causally associated 
with the risk of GDM (odds ratio [OR], 1.719; 95% CI, 
1.480–1.996; P < 0.001), Menorrhagia (OR, 1.011; 95% CI, 
1.004–1.019; P = 0.004), GH (OR, 1.581; 95% CI, 1.337–
1.870; P < 0.001), PCOS (OR, 1.920; 95% CI, 1.282–2.874; 
P = 0.002), PE (OR, 1.436; 95% CI, 1.214–1.698; P < 0.001), 
EnOC (OR, 1.436; 95% CI, 1.014–1.980; P = 0.027), and 
EC (OR, 1.804; 95% CI, 1.513–2.151; P < 0.001) respec-
tively, as shown in Fig. 3A and Table S11. Concurrently, 
reverse MR analysis was conducted. Under stringent 
selection criteria, we found no suitable instruments for 
SAB and EnOC. Thus, our analysis focuses on GDM, 
Menorrhagia, GH, PE, PCOS, and EC, providing prelimi-
nary insights into their potential causal effects on BMI. 
We only found a reverse causal relationship between 
GDM and BMI (OR, 1.021; 95% CI, 1.008–1.035; 
P = 0.001) (Fig. 3B and Table S11).

Identification of shared functional genes for BMI and 
female reproductive disorders
We combined GWAS summary data for BMI and female 
reproductive disorders with eQTL summary data of 
whole blood tissue in GTEx and eQTLGen. As a result, 
we identified 10 shared risk genes between BMI & GDM, 

Table 2  21 Colocalized loci identified by colocalization analysis performed on 51 pleiotropic loci (PP.H4 > 0.7)
Trait pairs LeadSNPs Region Locus boundary SNP.PP.H4
BMI & EnOC rs7204632 16p11.2 16:30591675–30,660,700 0.864
BMI & EC rs11066188 12q24.13 12:111826477–112,906,415 0.707
BMI & EC rs11865403 16p12.3 16:19706199–19,831,532 0.789
BMI & EC rs3922668 16p11.2 16:28510393–29,008,079 0.766
BMI & EC rs12602912 17q24.2 17:65822573–66,096,529 0.987
BMI & PCOS rs2990997 1q31.1 1:190112653–190,163,532 0.842
BMI & PCOS rs9819875 3p22.1 3:42303074–42,334,191 0.911
BMI & PCOS rs12981256 19p13.3 19:1812682–1,920,342 0.988
BMI & GH rs1013293 1p31.3 1:62488918–62,634,303 0.981
BMI & GH rs4988235 2q21.3 2:135771974–136,823,866 0.828
BMI & GH rs6985109 8p23.1 8:9735970–11,450,422 0.863
BMI & GH rs11066188 12q24.13 12:111826477–112,906,415 0.925
BMI & PE rs656980 11q13.1 11:65575263–65,663,547 0.943
BMI & PE rs9955276 18p11.32 18:1811604–1,914,051 0.975
BMI & GDM rs17024258 1p13.3 1:110078255–110,216,436 0.999
BMI & GDM rs12713419 2p23.3 2:25074874–25,453,968 0.865
BMI & GDM rs4684847 3p25.2 3:12329783–12,413,339 0.988
BMI & GDM rs7717348 5q15 5:95388015–95,765,413 0.998
BMI & GDM rs1579557 6p21.2 6:40348653–40,383,533 0.758
BMI & GDM rs11663558 18q11.2 18:21075441–21,165,409 0.980
BMI & GDM rs11671664 19q13.32 19:46148237–46,177,235 0.983
Abbreviations: BMI, body mass index; PCOS, polycystic ovary syndrome; GDM, gestational diabetes mellitus; GH, gestational hypertension; PE, pre-eclampsia or 
eclampsia; EC, endometrial cancer; EnOC, endometrioid ovarian cancer; PP.H4, posterior probability for H4
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BM I& GH, and BMI & EC in whole blood, including 
EIF2S2P3, MCM6, EVI2A, MRPL34, DNAJC3-DT, LCT-
AS1, MFHAS1, CSK, ULK3, and NF1. Among them, only 
EIF2S2P3 (BMI & GDM) and MCM6 (BMI & GH) passed 
the HEIDI-outlier test for cis_eQTL data (Table S12). 
Notably, MCM6 was a pleiotropic gene between BMI and 
GH in the MAGMA analysis above (Table S6). Addition-
ally, MCM6 and EVI2A are potentially shared causal risk 
genes between BMI & GH and BMI & EC, further high-
lighting their pleiotropy in these traits (Table S12).

Discussion
In this study, we performed a comprehensive assessment 
of the shared genetic architecture and causal relation-
ship between BMI and female reproductive diseases by 
analyzing large-scale GWAS summary data, aiming to 
elucidate their shared underlying molecular biological 
mechanisms. We revealed a significant genetic correla-
tion between BMI and GDM, EC, GH, PE, PCOS, SAB, 
menorrhagia, and EnOC. Additionally, we investigated 
whether the correlation reflects pleiotropy or causality 
and found that, except for miscarriage, both pleiotropic 
loci and causal relationships exist between BMI and the 

other diseases. The genetic association between BMI and 
miscarriage is primarily driven by pleiotropy. Further-
more, we identified significant enrichment of metabolic 
processes, biosynthetic processes, and transcriptional 
regulation pathways in brain, pituitary, and ovarian tis-
sues. Insulin, various lipid metabolites, glucose, and 
amino acids may be involved in mechanisms shared 
between BMI & GDM and BMI & EC. Finally, SMR 
analysis showed that EIF2S2P3 and MCM6 may serve 
as potential drug targets for obesity, GDM, GH, or their 
comorbidities. To the best of our knowledge, this is the 
first study to comprehensively explore the genetic rela-
tionships and potential mechanisms between BMI and 
these female reproductive diseases, which have signifi-
cant implications for women’s health.

Our genetic correlation analysis revealed significant 
positive associations between BMI and eight female 
reproductive diseases (SAB, EC, EnOC, GDM, GH, Men-
orrhagia, PCOS, and PE), suggesting that a higher BMI 
may increase the risk of these diseases through genetic 
synergistic effects. Currently, there is limited research 
on the genetic associations between BMI and female 
reproductive diseases. Liu et al. previously identified a 

Fig. 2  Bar plots of genome-wide pleiotropic results. (A) MAGMA gene-set analysis; (B) MAGMA tissue-specific analysis. The red dotted line indicates a 
significance threshold of 0.05 after multiple corrections, while the blue line represents a threshold of 0.05. BMI, body mass index; PCOS, polycystic ovary 
syndrome; GDM, gestational diabetes mellitus; GH, gestational hypertension; PE, pre-eclampsia or eclampsia; EC, endometrial cancer; EnOC, endometri-
oid ovarian cancer; SAB, spontaneous abortion
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Trait pairs Panel Trait loci_SNP PP RP Post_exp_snp
BMI & GDM Hormone Insulin rs13083375 0.932 0.994 0.403
BMI & EC Hormone Insulin rs12602912 0.906 0.938 0.971
BMI & GDM Glycolysis Glucose rs7713317 0.892 1.000 0.257
BMI & GDM Amino acids Glycine rs1801282 0.889 0.994 0.399
BMI & GDM Amino acids Glutamine rs1801282 0.869 0.961 0.329
BMI & GDM Size & Apo-LP Average diameter for VLDL particles rs1801282 0.841 0.993 0.336
BMI & GDM Size & Apo-LP Average diameter for LDL particles rs1801282 0.839 0.973 0.243
BMI & EC Cholesterol Cholesterol in large VLDL rs12602912 0.831 0.991 0.665
BMI & EC Triglycerides Triglycerides in very small VLDL rs12602912 0.830 0.991 0.677
BMI & EC Free cholesterol Free cholesterol in large VLDL rs12602912 0.829 0.991 0.666
BMI & EC Triglycerides Triglycerides in large LDL rs12602912 0.828 0.990 0.669
BMI & EC Phospholipids Phospholipids in large VLDL rs12602912 0.828 0.990 0.673
BMI & EC Triglycerides Triglycerides in LDL rs12602912 0.828 0.991 0.671
BMI & EC Cholesterol Cholesterol in very large VLDL rs12602912 0.827 0.990 0.652
BMI & EC Triglycerides Triglycerides in medium LDL rs12602912 0.827 0.990 0.673
BMI & EC Triglycerides Triglycerides in IDL rs12602912 0.827 0.991 0.666
BMI & EC Triglycerides Triglycerides in small HDL rs12602912 0.826 0.990 0.686
BMI & EC Triglycerides Triglycerides in medium VLDL rs12602912 0.826 0.990 0.684
BMI & EC Lipoprotein particles Concentration of small VLDL particles rs12602912 0.826 0.991 0.668
BMI & EC Total lipids Total lipids in large VLDL rs12602912 0.825 0.990 0.673
BMI & EC Lipoprotein particles Concentration of large VLDL particles rs12602912 0.825 0.990 0.669
BMI & EC Total lipids Total lipids in VLDL rs12602912 0.824 0.990 0.657
BMI & EC Triglycerides Triglycerides in small VLDL rs12602912 0.824 0.990 0.682
BMI & GDM Triglycerides Triglycerides in very large VLDL rs1801282 0.823 0.983 0.372
BMI & EC Free cholesterol Free cholesterol in very large VLDL rs12602912 0.823 0.990 0.648
BMI & EC Phospholipids Phospholipids in very large VLDL rs12602912 0.822 0.990 0.650
BMI & GDM Triglycerides Triglycerides in large VLDL rs1801282 0.819 0.988 0.377
BMI & EC Triglycerides Triglycerides in large VLDL rs12602912 0.818 0.990 0.672
BMI & EC Fatty Acids Monounsaturated fatty acids rs12602912 0.818 0.990 0.654
BMI & EC Triglycerides Triglycerides in HDL rs12602912 0.818 0.987 0.671
BMI & EC Lipoprotein particles Concentration of very large VLDL particles rs12602912 0.817 0.990 0.654
BMI & EC Total lipids Total lipids in very large VLDL rs12602912 0.817 0.990 0.654
BMI & EC Triglycerides Triglycerides in small LDL rs12602912 0.816 0.990 0.655
BMI & EC Compounds Total triglycerides rs12602912 0.815 0.990 0.662
BMI & GDM Triglycerides Triglycerides in chylomicrons and extremely large VLDL rs1899951 0.815 0.991 0.287
BMI & GDM Lipoprotein particles Concentration of chylomicrons and extremely large VLDL particles rs1801282 0.813 0.977 0.333
BMI & EC Triglycerides Triglycerides in medium HDL rs12602912 0.813 0.983 0.670
BMI & EC Triglycerides Triglycerides in VLDL rs12602912 0.812 0.990 0.657
BMI & EC Triglycerides Triglycerides in very large VLDL rs12602912 0.808 0.990 0.652
BMI & EC Total lipids Total lipids in small VLDL rs12602912 0.807 0.991 0.664
BMI & EC Esterified cholesterol Cholesteryl esters in chylomicrons and extremely large VLDL rs12602912 0.806 0.979 0.624
BMI & EC Cholesterol Cholesterol in chylomicrons and extremely large VLDL rs12602912 0.806 0.983 0.617
BMI & EC Fatty Acids Total fatty acids rs12602912 0.806 0.979 0.644
BMI & EC Phospholipids Phospholipids in VLDL rs12602912 0.805 0.991 0.653
BMI & EC Size & Apo-LP Average diameter for HDL particles rs12602912 0.800 0.976 0.609
BMI & EC Free cholesterol Free cholesterol in chylomicrons and extremely large VLDL rs12602912 0.799 0.979 0.611
BMI & EC Lipoprotein particles Concentration of chylomicrons and extremely large VLDL particles rs12602912 0.798 0.980 0.613
BMI & GDM Phospholipids Phospholipids in chylomicrons and extremely large VLDL rs1801282 0.798 0.962 0.346
BMI & EC Phospholipids Phospholipids in chylomicrons and extremely large VLDL rs12602912 0.791 0.967 0.617
BMI & EC Fatty Acids Saturated fatty acids rs12602912 0.788 0.960 0.638
BMI & GDM Total lipids Total lipids in chylomicrons and extremely large VLDL rs1801282 0.786 0.969 0.311
BMI & GDM Triglycerides Triglycerides in VLDL rs1801282 0.784 0.958 0.381
BMI & EC Esterified cholesterol Cholesteryl esters in very large VLDL rs12602912 0.781 0.990 0.647

Table 3  Multi-trait colocalization analysis highlighted key role of metabolites and hormones (pp > 0 0.7)
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significant genetic correlation between BMI and PCOS 
through LDSC analysis [15], which aligns with our find-
ings and further supports BMI as an important genetic 
factor in female reproductive health. Additionally, pre-
vious studies have shown a strong epidemiological link 
between BMI and the other seven reproductive disor-
ders. Our study expands on this by identifying shared 
genetic backgrounds between BMI and these diseases, 
underscoring the importance of BMI management in 
reducing the risk of these female reproductive disorders 
in clinical practice. Furthermore, the bivariate LDSC 
and HDL methods are powerful and complementary 
approaches for genetic correlation analysis. While LDSC 
is widely used for estimating genetic correlations from 

GWAS data, HDL provides a significant advantage by 
fully accounting for genome-wide LD patterns, improv-
ing accuracy and robustness, especially for traits with 
complex polygenic architectures or smaller heritability. 
This study is the first to use both methods to evaluate the 
genetic links between BMI and 16 female reproductive 
disorders, offering a more comprehensive and precise 
understanding of their shared genetic architecture and 
setting a foundation for future research in this field.

Cross-trait PLACO analysis and FUMA analysis 
identified 50 pleiotropic genetic loci between the BMI 
and female reproductive diseases (SAB, EC, EnOC, 
GDM, GH, PCOS, and PE), including 23 novel loci and 
27 previously reported loci. According to the existing 

Fig. 3  Bidirectional Mendelian randomization analysis between BMI and multiple female reproductive disorders. (A) The causal effect of BMI on female 
reproductive disorders. (B) The causal effect of female reproductive disorders on BMI. BMI, body mass index; PCOS, polycystic ovary syndrome; GDM, 
gestational diabetes mellitus; GH, gestational hypertension; PE, pre-eclampsia or eclampsia; EC, endometrial cancer; EnOC, endometrioid ovarian cancer; 
SAB, spontaneous abortion

 

Trait pairs Panel Trait loci_SNP PP RP Post_exp_snp
BMI & EC Total lipids Total lipids in chylomicrons and extremely large VLDL rs12602912 0.780 0.961 0.608
BMI & GDM Compounds Total concentration of lipoprotein particles rs7550711 0.776 0.802 0.946
BMI & EC Size & Apo-LP Average diameter for VLDL particles rs12602912 0.773 0.965 0.638
BMI & EC Esterified cholesterol Cholesteryl esters in large HDL rs12602912 0.766 0.988 0.628
BMI & GDM Lipoprotein particles Concentration of HDL particles rs7550711 0.766 0.793 0.949
BMI & EC Cholesterol Cholesterol in large HDL rs12602912 0.762 0.986 0.626
BMI & GDM Total lipids Total lipids in very large VLDL rs1801282 0.750 0.923 0.395
BMI & GDM Lipoprotein particles Concentration of very large VLDL particles rs1801282 0.746 0.910 0.398
BMI & EC Triglycerides Triglycerides in chylomicrons and extremely large VLDL rs12602912 0.745 0.922 0.607
BMI & GDM Free cholesterol Free cholesterol in chylomicrons and extremely large VLDL rs1801282 0.741 0.905 0.359
BMI & GDM Phospholipids Phospholipids in very large HDL rs891387 0.728 0.950 0.222
BMI & GDM Compounds Total triglycerides rs1801282 0.727 0.893 0.400
BMI & GDM Total lipids Total lipids in very large HDL rs891387 0.705 0.930 0.218
Abbreviations: BMI, body mass index; PCOS, polycystic ovary syndrome; GDM, gestational diabetes mellitus; GH, gestational hypertension; PE, pre-eclampsia or 
eclampsia; EC, endometrial cancer; EnOC, endometrioid ovarian cancer; SAB, spontaneous abortion; PP, posterior probability; RP, regional probability; post_exp_
snp, osterior_explained_by_snp

Table 3  (continued) 



Page 11 of 15Shao et al. Reproductive Biology and Endocrinology           (2025) 23:71 

publications, the 27 known loci are mainly associated 
with BMI, obesity, T2D, metabolic syndrome, and lipid 
metabolism [39–42]. We also found that rs11066188, one 
of the 50 pleiotropic loci, is associated with blood pres-
sure, cardiovascular, and neurological diseases [43], indi-
cating that it may play a role in the BMI & GH and BMI 
& EC through vascular and neuroendocrine pathways. 
Additionally, these 50 loci are distributed across 42 gene 
regions, with the 8p23.1 region repeatedly appearing in 
multiple phenotypes (e.g., BMI & SAB, BMI & GH, BMI 
& PE), suggesting its pleiotropic role in these BMI and 
reproductive traits. The 8p23.1 region has been widely 
studied due to its involvement in neurodevelopment, car-
diac development, and cancer [44, 45]. Moreover, previ-
ous research has suggested that inversions in the 8p23.1 
region may interact with environmental factors to influ-
ence DNA methylation patterns during early life stages, 
which may play a critical role in obesity-related health 
outcomes [46]. The 12q24.13 locus also showed signifi-
cant associations in the analysis of BMI & EC and BMI 
& GH. This region is notable for its association with sev-
eral genes that play crucial roles in immune response 
and metabolic regulation. Previous studies have shown 
that this locus is closely related to metabolic traits such 
as high-density lipoprotein cholesterol and fasting glu-
cose [47], which may support the hypothesis that BMI’s 
impact on reproductive disease risk may be mediated 
through these metabolic elements.

Pathway enrichment analysis revealed that RNA 
metabolism and synthesis processes were enriched in 
multiple trait pairs, including BMI & GH, BMI & GDM, 
BMI & PCOS, and BMI & EnOC. This suggests that these 
processes may be involved in the genetic links between 
BMI and these traits. In BMI & GDM, pathways related 
to monosaccharide response, carbohydrate response, and 
β-cell apoptosis were enriched. GDM, a high blood glu-
cose condition occurring during pregnancy, is strongly 
associated with maternal insulin resistance and β-cell 
dysfunction [48]. In BMI & PCOS, the gastrin signaling 
pathway was significantly enriched. Recent studies have 
suggested that gastrin, beyond its role in the digestive 
system, may be linked to endocrine disorders and meta-
bolic diseases. For instance, through receptors such as 
the cholecystokinin B receptor, gastrin affects insulin 
secretion and sensitivity, potentially contributing to insu-
lin resistance in PCOS patients [49]. Therefore, targeting 
the gastrin signaling pathway could offer new therapeutic 
options for obesity and PCOS. In BMI & EC, the PTEN 
regulation pathway was notably enriched. Research has 
shown that PTEN loss in obese patients leads to abnor-
mal PI3K pathway activation, promoting uterine cancer 
[50]. Obesity may thus advance EC via the PTEN/PI3K/
AKT pathway. Thereby, further investigation of the rela-
tionship between BMI and the PTEN pathway is essential 

for developing prevention and treatment strategies for 
EC. Furthermore, tissue enrichment analysis highlights 
the potential role of brain regions and the pituitary in the 
relationship between BMI and female reproductive dis-
eases, which is consistent with previous studies. Snider 
et al. have found that obese women often experience 
ovulatory dysfunction due to disruptions in the hypotha-
lamic-pituitary-ovarian axis, which is crucial for normal 
reproductive function [51]. Additionally, a meta-analysis 
from the GIANT Consortium (involving over 339,000 
individuals) identified 97 BMI-associated genetic loci, 
with genes near these loci being enriched in the central 
nervous system, supporting the hypothesis that BMI is 
regulated by the hypothalamus [52]. In the trait pairs of 
BMI & PCOS and BMI & EnOC, ovarian involvement 
was notably enriched, which aligns with the strong link 
between PCOS, EnOC, and ovarian function. The study 
by Masao et al. also suggests that obesity, as a chronic 
inflammatory state, may promote macrophage infiltra-
tion in the ovaries via the MCP-1 pathway, thereby affect-
ing ovarian function [53]. Therefore, improving ovarian 
health in obese women and developing strategies to 
address ovarian dysfunction are crucial for reducing the 
incidence of PCOS, EnOC, and related conditions.

Multi-trait colocalization analysis identified insulin 
with the highest posterior probability, colocalizing with 
BMI & GDM and BMI & EC. The role of insulin is a key 
focus in the research of GDM. Studies have shown that 
during pregnancy, insulin demand increases to support 
fetal growth and development. However, some women 
may be unable to produce sufficient insulin, leading to 
elevated blood glucose levels and the development of 
GDM [54]. Our study provides the first genetic evidence 
of this mechanism and highlights rs13083375 as a poten-
tial contributor to this association. Regarding the rela-
tionship between insulin and BMI & EC, prior studies 
have explored how insulin resistance and related meta-
bolic abnormalities influence the risk of EC, particularly 
in overweight or obese women [55]. A large case-control 
study by Zhang et al. revealed a significant association 
between metabolic syndrome and the risk of EC [56]. 
Additionally, a MR analysis demonstrated insulin’s medi-
ating role in the BMI & EC risk relationship. Rs12602912, 
which mediated the colocalization of various lipid 
metabolites and BMI & EC, was previously reported to 
be associated with BMI, metabolic syndrome, triglyc-
eride levels, and psoriasis [57–60]. Lipid metabolism is 
increasingly recognized in the pathogenesis of EC, with 
reprogrammed lipid metabolism driving tumorigenesis, 
invasion, and metastasis. Fatty acid uptake and metabo-
lism are also proven crucial for cell proliferation and 
survival in the development of EC [61]. These findings 
suggest rs12602912 as a potential biomarker and thera-
peutic target for early EC diagnosis and treatment. Lastly, 
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we found that glycine and glutamine play important roles 
in the BMI & GDM relationship. Intake of these amino 
acids may improve insulin sensitivity, reduce blood glu-
cose, and potentially lower the risk of GDM.

To distinguish between pleiotropy and causal relation-
ships, we used MR analysis, which controls for confound-
ing and reverse causality. Our bidirectional MR analysis 
showed that BMI may cause several female reproductive 
diseases (GH, Menorrhagia, PCOS, PE, GDM, EnOC, 
and EC), while only GDM had a causal effect on BMI. 
This underscores BMI’s key role and the importance 
of weight management, particularly in GDM. In addi-
tion, SMR analysis revealed that EIF2S2P3 and MCM6 
could be potential drug targets for obesity, GDM, and 
GH. MCM6, a key component of the mini-chromosome 
maintenance complex involved in DNA replication [62], 
has been shown to increase in the placenta under obesity, 
potentially impairing placental function and fetal health 
through enhanced insulin resistance [63]. EIF2S2P3, a 
pseudogene with limited research, has been suggested to 
play a role in metabolic regulation [64, 65]. Our study is 
the first to demonstrate that EIF2S2P3 expression may 
directly influence the relationship between BMI and 
GDM. These findings highlight the potential of both 
genes as drug targets for addressing GDM and GH and 
warrant further investigation.

With the increasing global prevalence of overweight 
and obesity, it is crucial to better understand the molecu-
lar mechanisms through which obesity elevates the risk 
of female reproductive disorders. Our study is the first 
to systematically elucidate the genetic correlation and 
mechanisms between BMI and women’s reproductive 
health through comprehensive genetic analysis. These 
findings suggest that increased BMI may elevate the risk 
of reproductive diseases through mechanisms such as 
metabolic dysregulation and insulin resistance, empha-
sizing the critical role of BMI management in the pre-
vention and treatment of these conditions. In clinical 
practice, improving diet, increasing physical activity, and 
implementing effective weight management strategies, 
particularly for high-risk populations, can help reduce 
the incidence of these diseases. In addition to weight 
management strategies, our findings on the genetic 
molecular mechanisms between BMI and female repro-
ductive disorders can aid in the development of drug 
targets for high-risk populations with these traits, thus 
providing a supplementary approach to preventing spe-
cific female reproductive diseases. However, our study 
also has some limitations. Firstly, we used summary-level 
data, lacking individual-level datasets, so we couldn’t 
explore the impact across different reproductive stages or 
specific disease subgroups. Secondly, to minimize popu-
lation stratification bias, the genetic data in this study 
were limited to individuals of European ancestry, which 

may limit the applicability of the results to other popu-
lations. Thirdly, the inferred causal relationship is based 
on GWAS summary statistics and is therefore specula-
tive. Larger and more robust GWAS on BMI and female 
reproductive disorders are needed to establish (or rule 
out) potential causal links. Lastly, we were unable to 
obtain GWAS data for placental tissues in tissue enrich-
ment analysis, which are crucial in pregnancy-related 
diseases, limiting our understanding of these pregnancy-
related disorders. Future research could benefit from 
including diverse ethnic groups, particularly Asian and 
African populations, to further explore and validate the 
genetic associations between BMI and female reproduc-
tive diseases across different populations. Additionally, 
individual-level data analysis should be utilized to explore 
BMI’s role at various reproductive stages and its impact 
on specific disease subgroups. Finally, further functional 
studies are also needed to investigate how pleiotropic loci 
and functional genes influence female reproductive dis-
eases and to develop targeted therapies.

Conclusion
In summary, our study highlights the shared genetic 
and molecular mechanisms underlying BMI and vari-
ous female reproductive diseases, emphasizing the criti-
cal role of metabolic and biosynthetic processes in their 
pathophysiology. The impact of BMI is characterized by 
its involvement in insulin regulation, lipid metabolism, 
glucose utilization, and amino acid pathways, which 
influence the development and progression of conditions 
such as GDM and EC. These mechanisms are mediated 
through pleiotropy and causal pathways. Exploring thera-
peutic targets based on shared pleiotropic loci, functional 
genes, or genetic pathways between BMI and female 
reproductive diseases holds great promise, particularly 
for developing interventions to improve reproductive 
health in women with high BMI.
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