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Abstract 

Background  The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized 
for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR’s critical 
participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the mainte-
nance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exog-
enous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link 
between environmental exposures and male fertility.

Results  This review highlights AhR’s influence on the male reproductive system, emphasizing the role of endog-
enous AhR ligands and AhR expression in the maturation and function of male reproductive organs. Environmental 
AhR agonists have been shown to induce oxidative stress, hormonal imbalance, and sperm DNA damage, which 
impact harmfully on the spermatogenesis process, which leads to reproductive abnormalities. Conversely, certain 
natural compounds such as resveratrol, curcumin, and lycopene appear to antagonize AhR activation and reduce its 
negative effects, thus offering potential protective benefits against male reproductive toxicity. Nevertheless, discrep-
ancies persist regarding the exact interplay between AhR signaling and critical reproductive hormones such as testos-
terone and LH, and it remains unclear how transgenerational epigenetic changes triggered by AhR activation might 
affect long-term male fertility.

Conclusion  AhR is pivotal in male reproductive physiology, influencing spermatogenesis, sperm quality, and hor-
mone regulation through its interactions with both endogenous and environmental ligands. Persistent pollutants 
such as dioxins and polycyclic aromatic hydrocarbons cause oxidative damage and hormonal disturbances via AhR, 
contributing to reduced sperm quality and fertility.
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Graphical Abstract
The Impact of ligands of Aryl Hydrocarbon Receptor (AhR) on Male Reproductive Health. →, activation; ⊣ , inhibition; 
DEHP, Di(2-ethylhexyl) phthalate; I3C, indole-3-carbinol; PAH, polycyclic aromatic hydrocarbon; TCDD, 2,3,7,8-tetrachlo-
rodibenzo-p-dioxin (Created by Biorender.com).

Introduction
The aryl hydrocarbon receptor (AhR) is a ligand-acti-
vated transcription factor that connects various external 
stimuli, including environmental, dietary, microbial, and 
metabolic. The AhR regulates transcriptional programs 
in a ligand-specific, cell-type-specific, and context-spe-
cific manner [1]. Scientific research has elucidated the 
complexities of AhR’s structure and function since the 
first report on identifying the AhR was published in 1976 
[2]. Despite decades of research on the AhR, its precise 
functions in male reproductive biology remain incom-
pletely understood and sometimes contradictory. Since 
then, the biological effects of AhR have been extensively 
studied across various physiological functions such as 
the nervous system [3, 4], immune system [5, 6], diges-
tive system [7, 8], hepatic function [9–11], respiratory 
system [5, 12, 13], renal system [14, 15], skin health [16], 
and others [17]. Moreover, the complex network of AhR 
extends its influence on the realm of reproduction, add-
ing another layer of complexity to its biological signifi-
cance. However, findings often diverge regarding whether 
AhR activation promotes or inhibits male germ cell 
development. It impacts the intricate cellular processes 
involved in reproduction, playing a pivotal role in fertility, 

embryonic development, and hormone signaling. While 
different studies report detrimental effects (e.g., reduced 
sperm counts, disrupted hormone levels, or testicular 
pathology following AhR ligand exposure), others high-
light AhR’s protective or homeostatic roles through its 
endogenous ligands and crosstalk with various signaling 
pathways [18–20]. The interaction of AhR with endog-
enous and exogenous ligands modulates gene expression 
and contributes to the delicate balance of reproductive 
functions [18–20]. Investigating the relationship between 
AhR and reproductive processes not only enhances our 
understanding of fertility, reproductive disorders, and the 
impact of environmental factors on reproductive health 
but also unveils the intricate molecular mechanisms 
underlying critical aspects of life.

That critical gap relates to the interplay between AhR 
and other hormone receptors, such as androgen and 
estrogen receptors. AhR can antagonize or augment 
these signals through direct protein–protein interactions 
or co-occupancy at shared response elements on DNA, 
leading to uncertain net effects on testosterone produc-
tion, luteinizing hormone levels, and Sertoli cell func-
tion. There has been a limited number of reviews on the 
role of AhR in the regulation of the male reproductive 
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system. As the new role of AhR is becoming recognized, 
we believe that a timely review that explores its role in 
male reproductive systems is warranted. To this end, this 
review provides an overview of AhR’s structure, function, 
and signaling pathways. Additionally, we consider its 
impact on male reproductive health and disorders, focus-
ing on the influence of environmental factors, and iden-
tifying potential therapeutic applications in these areas.

Aryl hydrocarbon receptor
The AhR is a diverse and dynamic cytosolic receptor 
with expression in an extensive range of tissues through-
out both developmental stages and adulthood [21]. Its 
widespread presence underscores its crucial nature in 
myriad biological processes, highlighting its role as a key 
regulator in maintaining homeostasis and responding to 
environmental cues [22]. The varied expression of AhR 
across tissues and life stages provides solid evidence of 
its involvement in vital physiological functions, suggest-
ing its role in orchestrating complex biological systems 
[23]. Renowned as a transcription factor, AhR is activated 
by ligands and holds significant importance in an array 
of physiological functions such as xenobiotic metabo-
lism, cellular proliferation, and developmental pathways. 
Notably, its importance has been reaffirmed in the field 
of reproductive studies thanks to its crucial regulatory 
functions [24].

History of aryl hydrocarbon receptor discovery
The aryl hydrocarbon receptor (AhR) was initially char-
acterized in the 1970 s when researchers investigated the 
toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
[25, 26]. The human AhR cDNA was identified in 1993, 
as being expressed at the highest levels in the placenta, 
lungs, and heart [27]. Although first recognized as a 
key mediator of xenobiotic metabolism (e.g., driving 
cytochrome P450 induction), more recent work has high-
lighted AhR’s influence on reproductive processes and 
immune regulation [28–32].

Human epidemiological evidence linking AhR to male 
reproductive outcomes
The most notable human data that discusses the relation-
ship between AhR and reproductive toxicity began in 
1976 following Seveso chemical explosion in Italy, which 
exposed residents to extremely high levels of TCDD 
[33] Subsequent epidemiological follow-ups revealed 
several long-term health impacts, including changes in 
sex ratios (fewer male births) and reduced sperm qual-
ity in exposed men [34]. Additionally, the study noted 
decreases in sperm count, motility, and normal mor-
phology, suggesting that acid-induced AhR activation 
contributed to these adverse effects on male fertility. 

Moreover, evidence arises from occupational exposure 
studies; the men working in industries with high dioxin 
or polycyclic aromatic hydrocarbon (PAH) exposure (e.g., 
aluminum smelting, steel production, or pesticide manu-
facturing) have shown altered semen parameters and, in 
some cohorts, lower testosterone levels or gonadotropin 
imbalances [35].

Outstanding questions in AhR‑mediated male 
reproductive regulation
Despite the progress made so far, there remain several 
key uncertainties regarding how the AhR influences 
male reproductive biology. Also, a key question that 
remains to be addressed is whether germline epigenetic 
changes arising from AhR activation could be passed 
down through multiple generations. Yet another concern 
involves the degree to which chronic, low-level exposure 
to AhR ligands subtly affects hormone production and 
semen characteristics, and whether specific developmen-
tal windows—such as puberty or adulthood—are more 
vulnerable [28, 35]. Further complexities include the ways 
in which AhR may interact with other endocrine path-
ways and how dietary or microbial metabolites acting as 
AhR ligands might influence reproductive outcomes [29].

Structure of aryl hydrocarbon receptor
The AhR is a transcription factor that belongs to the basic 
helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family. Its 
structure consists of three domains (Fig. 1) [36]: the core 
DNA-binding domain, the N-terminal PAS domain, and 
the C-terminal ligand-binding domain [37, 38]. Com-
bined, these domains give the AhR the capacity to bind 
ligands, regulate gene expression, and recognize environ-
mental stimuli [39].

To sense a wide array of ligands and initiate confor-
mational changes that lead to AhR activation, the N-ter-
minal bHLH/PAS domains are vital [37]. Furthermore, 
these domains facilitate the translocation of the ligand-
bound AhR-ARNT complex into the nucleus, where it 
interacts with target gene promoters and binds to DNA 
[40]. Because of its complex ligand interactions, the cen-
tral domain delicately manages gene expression by refin-
ing AhR’s response to external stimuli [41].

Moreover, AhR possesses nuclear export signals (NES) 
and nuclear localization signals that dictate its movement 
between the cytoplasm and nucleus [42, 43]. Guided to 
the nucleus by the NLS, the AhR regulates gene expres-
sion. The NES consequently facilitates AhR’s export from 
the nucleus, ensuring that transcriptional responses con-
clude promptly [44].

Trans-activation of transcription is achieved through 
the interaction of AhR’s trans-activation domain (TAD) 
with co-activators, such as ARNT, CBP/p300, and SRC-1. 
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Through the dynamic modulation of the TAD’s activity 
by post-translational modifications like phosphorylation 
and acetylation of histones, AhR can tailor gene expres-
sion responses to different cellular contexts and enhance 
gene transcription.

Understanding of AhR’s three-dimensional structure 
and ligand-binding pockets has been advanced by struc-
tural studies, including homology modeling and ligand 
docking experiments. These studies have also illuminated 
the molecular mechanisms that allow AhR’s flexible 
ligand-binding capacity [45, 46]. In-depth investigations 
reveal the complex nuances of these conformational 
shifts, which are critical for AhR activation and subse-
quent gene transcription. These conformational altera-
tions are prompted by ligand binding.

When AhR is idle, it is usually positioned in the cytosol 
where it is associated with a cluster of chaperone proteins 
that maintains its stability and prevent its degradation 
[47, 48]. This stable form of AhR in the cytosol, identified 
as the AhR-low activity variant, displays a diminished 
responsiveness to ligand activation [41].

Cytosolic aryl hydrocarbon receptor
Under normal physiological conditions, the AhR is nat-
urally found in an idle mode in the cytosol of various 
cells. This status is also known as the AhR-low activity 
variant, which is less responsive to activation by ligands 
[49]. In its stable cytosolic form, the AhR is associated 
with a complex of chaperone proteins, including AhR-
interacting protein (AIP), Heat shock protein 90 (HSP90), 

Prohibitin 23 (p23), and X-associated protein 2 (XAP2). 
These proteins help maintain its structural integrity and 
prevent its degradation in the absence of ligand binding. 
Furthermore, the stabilization of AhR within the cyto-
plasm, which prevents unliganded nucleocytoplasmic 
shuttling, protects AhR from degradation by the ubiqui-
tin–proteasome pathway, as illustrated in Fig. 2 [50].

Aryl hydrocarbon receptor repressor
The aryl hydrocarbon receptor repressor (AhRR) has been 
identified as a target gene of AhR, providing a unique 
mechanism of feedback inhibition of AhR function where 
the transcription factor directly induces the expression 
of its repressor through binding to its cognate regulatory 
sequence located in the promoter of the target gene. The 
N-terminal portion of the AhRR protein shows signifi-
cant structural resemblance to AhR, particularly hous-
ing the DNA-binding bHLH domain and the PAS-A 
domain (Fig. 1). However, the C-terminal segment lacks 
the PAS-B and Q-rich TADs, suggesting that AhRR does 
not possess the well-defined AhR ligand-binding domain 
and remains transcriptionally inactive. AhRR expression 
is regulated by one or more xenobiotic response elements 
(XREs) found in the enhancer/promoter sequence of the 
murine and human Ahrr gene. AhRR can dimerize with 
ARNT and function as a specific inhibitor of AhR activ-
ity by competing with AhR to form heterodimers with 
ARNT, thus preventing the binding and trans-activation 
of AhR/ARNT complexes via XREs (Fig. 3) [51]. The abil-
ity of AhRR to regulate AhR’s signaling in major cellular 

Fig. 1  The functional domains of the AhR, ARNT and AhRR proteins: AhR domain structure; PAS: Per-Arnt-Sim (A and B); Q-rich: glutamine; S/T/P: 
serine, threonine & proline [36]



Page 5 of 25Bustani et al. Reproductive Biology and Endocrinology           (2025) 23:70 	

processes like cell cycling, inflammation, and apopto-
sis is complex and varies depending on the cellular and 
environmental context. Moreover, in  vitro experiments 
with multiple distinct types of cancer cell lines indicated 
that AhRR acts as a tumor suppressor gene [52]. Nota-
bly, a recent investigation uncovered numerous unique 
DNA binding sites within the promoter regions of tumor 
suppressor genes and genes associated with cancer 
development, specifically targeted by AhRR [53]. Addi-
tionally, human studies found epigenetic modifications 

of AhRR’s regulatory region associated with exposure to 
cigarette smoke and the development of various cancer 
types [54]. Conversely, a study found that overexpress-
ing AhRR in a transgenic mouse model led to the induc-
tion of Cytochrome P450 1 A1 (CYP1 A1) by TCDD in 
a tissue-specific manner and that the overexpression of 
AhRR protected against hepatic injury and acute TCDD 
toxicity. CYP1 A1 is known for its involvement in the 
bioactivation of certain procarcinogens, converting them 
into more reactive forms capable of binding to DNA and 

Fig. 2  The AIP/AhR/Hsp90/p23 complex. AhR: Aryl hydrocarbon receptor; AIP: Aryl hydrocarbon receptor-interacting protein; Hsp: Heat shock 
protein Hsp90-AhR-p23 complex [50]

Fig. 3  Schematic illustration of the repression of the canonical AhR signaling pathway by AhRR [51]
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potentially causing mutations. Thus, in the mouse model, 
overexpression of AhRR protected the mice from cancer 
development by preventing TCDD from activating CYP1 
A1 [55, 56].

Aryl hydrocarbon receptor nuclear translocator
The AhR nuclear translocator (ARNT) is a protein that 
is essential for the function and comprehensive regula-
tory network of the AhR signaling pathway [57]. When 
AhR is activated in the cytoplasm, and the appropriate 
compounds bind within the AhR’s PAS domain, there are 
conformational changes and nuclear localization signals 
are unmasked [58]. Subsequently, AhR is translocated 
into the nucleus, where it is heterodimerized with ARNT. 
The transcriptionally active AhR/ARNT complex binds 
to XREs within the regulatory region of target genes to 
initiate transcription [39].

The ARNT is made up of a bHLH domain necessary 
for DNA binding, two essential PAS domains (PAS-A 
and PAS-B) for dimerization, and one trans-activation 
domain that enables its dimerization with AhR and bind-
ing to XREs [59]. The nuclear localization signal plays a 
role in oxygen sensing and cellular adaptation to hypoxic 
conditions, earning it the alternative name of HIF-1β 
[60]. ARNT operates at the intersection of multiple sign-
aling pathways, contributing to the fine-tuning of AhR-
mediated responses. ARNT features characteristic PAS 
domains and a bHLH motif, which facilitates its dimeri-
zation with AhR and binding to XREs [39].

AhR activation mechanisms (ligand activation to gene 
expression)
The AhR was frequently referred to as the “dioxin recep-
tor” due to early detection of its role in regulating toxic 
responses to environmental pollutants including dioxins. 
However, recent advancements have unveiled its mul-
tifaceted role in regulating immunity, cell proliferation, 
and differentiation [61]. Moreover, the activation of AhR 
is a complex process comprising several steps:

Endogenous role of AhR
AhR-null mouse models suggest that AhR has a role in 
liver development: the livers of AhR-null mice tend to 
be smaller, with portal fibrosis, premature lipid accu-
mulation, and further changes leading to the differen-
tial expression of hundreds of genes [62, 63]. Moreover, 
another study revealed that AhR deficiency exhibits sex-
dependent defects in rats [64], while AhR knockout mice 
show unregulated matrix remodeling [65] and various 
cardiac dysfunctions [66]. Hence, it appears that AhR par-
ticipates in the development of the liver, ovaries, cardio-
vascular system, immune system, and kidney formation in 
mammals [67]. The AhR has also been identified in early 

metazoans and multiple invertebrate species like Dros‑
ophila melanogaster and Caenorhabditis elegans, where 
it contributes to neuronal development [68]. Interestingly, 
invertebrate AhR orthologues do not seem to bind toxic 
AhR ligands, such as TCDD [69]. There are multiple can-
didate endogenous AhR ligands, including indoles, which 
are produced from dietary tryptophan by gut bacteria, 
and amino acid metabolites like prostaglandins and lipox-
ins; or tetrapyrroles, like bilirubin and biliverdin, 6-formyl 
(3,2-b) carbazole (FICZ), and 2-(1’H-indole-3-carbonyl)
thiazole-4-carboxylic acid methyl ester (ITE), etc. [70]. 
Furthermore, indole-3-carbinol (I3 C) is another indole 
found in high concentration in cruciferous vegetables 
such as broccoli, cabbage and cauliflower and serves as an 
agonist of AhR which leads to downregulation of estrogen 
metabolism in estrogen-related cancers [71]; and amelio-
rates the colitis outcomes through modulation of mucin 
production [72]. However, although these compounds 
have been shown to bind AhR and trigger the expression 
of AhR target genes in most cases, their actual in vivo sig-
nificance necessitates further investigation.

One of the most intriguing internal functions of 
AhR appears to be the modulation of cell prolifera-
tion in situations devoid of xenobiotic binding. Studies 
involving AhR-null mouse embryonic fibroblasts have 
demonstrated that AhR promotes progressive cell cycle 
activity even in the absence of an exogenous ligand [25, 
73]. Conversely, low levels of TCDD can inhibit DNA 
synthesis in mouse epithelial cell cultures, rat primary 
hepatocytes [58, 69], or in rat liver following partial 
hepatectomy [74]. Consider, for instance, rat hepatoma 
5L (AhR-positive) and BP8 (AhR-negative) cells. It has 
been observed that 5L cells proliferate more rapidly 
than BP8 cells [25, 58, 69]; furthermore, TCDD expo-
sure induces G1 arrest in 5L cells but does not affect the 
proliferation of BP8 cells. This cell cycle arrest is linked 
to an increased expression of the cyclin-dependent 
kinase 2 (CDK2) inhibitor p27kip1, which in turn pre-
vents the phosphorylation of pRb and subsequent acti-
vation of the E2 F transcription factor, a component 
that governs genes crucial for entry into the S-phase 
and DNA replication. Additional findings indicate that 
AhR directly interacts with pRb and represses the E2 
F-dependent transcription in hepatoma cells [75–77].

Conversely, in contact-inhibited rat liver epithelial 
cells, AhR ligands cause an opposing effect—the loss of 
contact inhibition, leading to elevated cell proliferation. 
This loss of contact inhibition is also an AhR-dependent 
event [78–81]. Up-regulation of cell proliferation in con-
fluent WB-F344 rat liver progenitor cells exposed to AhR 
ligand correlates with increased expression of cyclin A 
and heightened cyclin A/cdk2 activity [79]. In cells that 
are not exposed during contact inhibition, cyclin A gene 
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expression is suppressed along with cdk2 activity and cell 
proliferation [77]. Thus, AhR may have a dual role in cell 
cycle regulation: its activation might either promote pro-
liferation or act against it, depending on circumstances 
[82].

Ligands of aryl hydrocarbon receptor
The interaction between a ligand and a receptor is char-
acterized by multiple variables, and the final cellular 
response depends on the combination of these variables. 
In other words, the activation of the receptor by two dif-
ferent compounds may result in not just a quantitatively 
different, but also qualitatively unique cellular response 
[21, 83–85].

The majority of AhR ligands are partial agonists. Par-
tial agonists such as 2,3,3′,4,4′-pentachlorobiphenyl, and 
galangin possess a similar affinity as that of full agonists, 
though the inherent activity of a partial agonist is lower 
than a full agonist. Consequently, partial agonists can 
never elicit a maximal response, irrespective of whether 
a partial agonist occupies all receptors. Crucially, partial 
agonists perform as functional antagonists; when com-
bined with a full agonist, a partial agonist lessens the full 
agonist’s effect, thereby exhibiting antagonistic behavior 
[86, 87].

Aryl hydrocarbon receptor and the reproductive 
system
The 1976 Seveso chemical explosion in Italy exposed 
residents to elevated levels of TCDD, a toxic chemical 
compound known for its severe and long-lasting toxic 
effects. Moreover, TCDD is lipophilic, accumulates in 
fatty tissues, and has a long half-life in humans, which 
further exacerbates its impact on those exposed to it. 
Additionally, Kerger (2011) reported that the explosion 
caused chloracne and had potential long-term health 
consequences, including effects on cancer rates. Kerger 
further noted that the explosion led to altered dental 
development, changes in the sex ratio, and decreased 
sperm quality. Moreover, TCDD triggers a cascade of 
events that can disrupt sperm cell development [88]. 
TCDD exposure has been shown to interfere with sev-
eral key steps, leading to reduced sperm production, 
impaired sperm motility, and other reproductive issues 
[89]. AhR modulation alters the expression of genes 
involved in spermatogenesis and sperm function [90]. 
The rodent studies confirmed that TCDD and similar 
AhR ligands disrupt multiple steps of spermatogenesis 
that range from spermatogonia proliferation and meio-
sis to final sperm maturation [24, 91]. Furthermore, the 
AhR‐knockout mice showed abnormalities in seminif-
erous tubules, and reduced expression of protamine 
(Prm1/Prm2) and other spermatid‐specific genes were 

consistently observed, which proved the AhR’s regula-
tory role even in the absence of exogenous ligands [92].

Role of AhR in cell cycle stage
The seminiferous tubule in the testis houses a multi-
tude of germ cells at distinct stages of development and 
maturation within the spermatogenic cycle. These sper-
matogenic cells produce mature spermatozoa, which 
are released into the tubular lumen as functional sperm 
through the process of spermatogenesis. Spermatogen-
esis is a complex, dynamic process during which sper-
matogonia proliferates, differentiates, and transforms 
into mature spermatozoa. This process occurs in three 
major stages: the mitotic stage, the meiotic stage, and 
the maturation stage [92].

Role of AhR in spermatocytogenesis (Interphase 
and Mitosis)
Interphase

Gap 1 phase  The Gap 1 phase (pre-meiotic) is a critical 
stage in the development of male germ cells. This phase 
is characterized by the expression of specific genes that 
play a role in round spermatids. The Gap 1 phase is also 
associated with the formation of gap junctions, particu-
larly those involving Cx43, which play a role in the syn-
chronization of germ cell proliferation and differentia-
tion [93, 94]. The role of AhR in the G1 phase of the cell 
cycle is intricate and context-dependent. The specifics 
of how AhR action, particularly without an exogenous 
ligand, promotes cell progression through the G1 phase 
remain unclear. Additionally, studies using AhR-defective 
cell line variants and AhR-null mouse embryonic fibro-
blasts suggest that cells lacking a functional AhR possess 
a prolonged doubling time, which can mainly be attrib-
uted to a delayed progression through the G1 phase [95]. 
Conversely, exposure to potent AhR ligands like TCDD 
inhibits G1 phase progression in various cell lines [95, 
96]. TCDD-AhR-mediated inhibition of G1 phase pro-
gression involves increases in the levels of CDK2 and 
the inhibitor of p27 KIP1. Furthermore, the inhibition of 
CDK2 activity by p27 KIP1 leads to a stall in the cell cycle 
within the G1 phase [75, 97]. The impact of AhR on the 
cell cycle may differ based on the presence or absence of 
exogenous ligands and the specific cellular context [98]. 
Studies demonstrate that disruptions induced by AhR 
ligand lead to Cx43 degradation, which subsequently 
causes germ cell proliferation. This alters the differentia-
tion and forms of round spermatids [79].

Synthesis phase (S‑phase)  At the synthesis phase, cells 
undergo DNA replication in preparation for cell division, 
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and it plays a pivotal role in maintaining the spermato-
gonia stem cell population, which is crucial for continu-
ous sperm production [99]. Recent studies have indicated 
that AhR can contribute to the p300-mediated induc-
tion of DNA synthesis. Furthermore, AhR action in the 
absence of an exogenous ligand may expedite S-phase 
progression; however, exposure to the AhR ligand, such 
as TCDD, leads to the inhibition of DNA replication in 
various cell lines [69, 100, 101]. The presence of potent 
AhR ligands can tip the balance from a pro-proliferative 
role to an anti-proliferative outcome by altering expres-
sion of cell cycle regulatory genes and increasing meta-
bolic enzyme expression (e.g., CYP1 A1), which influ-
ences the cell’s redox state [69, 100, 101]. Additionally, 
research shows that TCDD treatment in animals reduces 
the number of cells in the S-phase and results in the 
accumulation of cells in the G1 phase [96]. From past 
studies, it appears that AhR plays a significant role in reg-
ulating the S-phase of the cell cycle [91]. Also, AhR activ-
ity, influenced by the presence or absence of its ligands 
and the metabolic activity of P4501 A1, is important in 
regulating cell cycle progression, particularly during the 
G1-to-S-phase transition. The alteration of cell cycle pro-
gression benefits from the manipulation of AhR activity 
and its subsequent effects on cell cycle regulators.

Gap 2 phase  The specific role of AhR during the Gap 2 
(G2) phase of the cell cycle is not yet well-defined. During 
the G2 phase, the cell checks itself for any DNA damage 
following replication, using a control mechanism known 
as the G2-M DNA damage checkpoint. This provides the 
cell with a period to correct potential errors in its genome 
before cell division [102]. Aurora kinase A, a serine/thre-
onine kinase, plays a critical role in facilitating the transi-
tion from the G2 phase to mitosis. Recent studies have 
demonstrated that Aurora kinase A, which is integral to 
the regulation of the G2/M checkpoint, exhibits dysregu-
lated expression in Aryl Hydrocarbon Receptor (AhR) 
knockout models (Jones et al., 2021). These findings sug-
gest that AhR may indirectly safeguard genomic integrity 
during the G2 phase; however, further investigations are 
required to fully elucidate the mechanisms underlying 
this process, especially in germ cells [103, 104].

Mitosis
Aurora kinase A promotes entry into mitosis by activat-
ing cyclin-dependent kinase 1, essential for the G2/M 
phase transition of the cell cycle. The specific role of AhR 
in the various phases of mitosis is not thoroughly stud-
ied, with limited information available. A prior study sug-
gests that AhR influences the expression of Aurora kinase 
A, and its absence or antagonism leads to increased 

intracellular levels of Aurora kinase A, critical in mito-
sis, particularly in spindle formation and chromosome 
segregation [105]. AhR directly binds to DNA at AhR-
responsive elements upstream of the Aurora kinase A 
gene’s transcriptional start site. This binding potentially 
acts as a transcriptional regulator or enhancer controlling 
Aurora kinase A expression. Additionally, studies sug-
gest that AhR plays a role in regulating the G2/M phase 
transition in hematopoietic stem and progenitor cells by 
influencing the expression of the key mitotic regulator, 
Aurora kinase A. Dysregulation of Aurora kinase A, as 
seen with altered AhR signaling, can impact the prolif-
erative capacity of these cells and potentially contribute 
to diseases.

In prophase, chromosomes condense and become vis-
ible, the nuclear envelope disintegrates, and the mitotic 
spindle begins to form. AhR plays a crucial role in chro-
matin condensation regulation during prophase, the first 
stage of mitosis. Chromatin condensation comprises the 
compaction of DNA into a more organized structure, 
simplifying proper chromosome alignment and seg-
regation in later stages [106]. Studies have shown that 
TCDD‐AhR signaling upregulates histone deacetylases 
by enhancing chromatin compaction. Moreover, exces-
sive compaction or mis‐timed deacetylation, however, 
can impair accurate chromosome segregation [107]. This 
allows histones to wrap the DNA more tightly [108–110]. 
Lack of AhR correlates with increased Aurora Kinase 
A expression and faster progression through mitosis, 
whereas TCDD‐bound AhR can paradoxically cause 
mitotic arrest in some contexts [24, 92]. Throughout 
metaphase, AhR contributes to chromosome align-
ment at the metaphase plate by enhancing the expres-
sion of microtubule-associated and kinetochore proteins, 
ensuring accurate chromosome segregation [111–113]. 
In anaphase, AhR facilitates sister chromatid segrega-
tion by triggering the expression of the anaphase-pro-
moting complex and microtubule motor proteins. These 
facilitate chromatids’ movement towards opposite poles 
[114–116]. During telophase, AhR is implicated in the 
reformation of the nuclear envelope and cytokinesis, bol-
stering the expression of nuclear envelope proteins, actin, 
and myosin filaments, generating two distinct daughter 
cells with intact nuclei and completing the mitotic pro-
cess [117]. Despite AhR’s importance in these mitotic 
stages, further research is required to fully grasp its regu-
latory mechanisms.

Meiosis (spermatogenesis)

Meiotic division I and II  AhR is essential for managing 
meiosis during spermatogenesis [24]. During prophase I 
of meiotic division I, AhR activation has been linked to 
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the regulation of gene expression impacting the progres-
sion of this phase. It manages momentous events such 
as homologous chromosome pairing and recombination 
[89]. The effect of AhR on spindle formation and chro-
mosome alignment becomes evident as cells transition 
into metaphase I, as AhR signaling may assist in the accu-
rate separation of homologous chromosomes during ana-
phase I [24]. In the context of telophase I, AhR plays a 
role in the establishment of two distinct haploid cell gam-
etes. Moreover, AhR continues to exert its influence in 
meiotic division II. In prophase II, AhR contributes to the 
maintenance of proper chromosomal arrangement and 
integrity [118].

During metaphase II, AhR contributes to the alignment 
of chromosomes along the equatorial plane. In anaphase 
II, it participates in preserving chromatid integrity during 
their orderly segregation. Furthermore, during telophase 
II, AhR likely aids in the completion of meiosis, leading 
to the formation of four haploid cells. In conclusion, AhR 
appears to be a significant molecular factor in orches-
trating the complex processes of meiosis during sper-
matogenesis, securing the precise transmission of genetic 
information to the forthcoming generation [21, 89].

Most mechanistic insights come from rodent studies 
exposing males to TCDD or using AhR‐null mice [21, 
80, 95]. Human epidemiological data are more limited 
and generally rely on retrospective analysis of TCDD‐
exposed populations (e.g., Seveso) showing elevated rates 
of sperm abnormalities [33, 88].

Spermiogenesis
In spermiogenesis, which involves the transformation 
of spermatids into motile spermatozoa, the AhR plays a 
pivotal role spanning multiple distinct phases: the Golgi 
Phase, Cap Phase, Tail Phase, and Maturation Phase. 
During the Golgi Phase, AhR orchestrates the formation 
of the acrosome, a specialized organelle that contains 
enzymes essential for fertilization [119]. As the process 
transitions to the Cap Phase, AhR may help influence the 
reshaping of the nucleus and the positioning of the cen-
triole, which are crucial for the subsequent formation of 
the sperm head and tail. In the Tail Phase, AhR poten-
tially contributes to the development of the flagellum, 
ensuring proper motility of the mature sperm [120]. In 
the final Maturation Phase, AhR is likely involved in final-
izing the structural and molecular modifications neces-
sary for the sperm cell to achieve full functionality [21, 
120–122].

Previous studies have displayed abnormalities in the 
seminiferous tubules of AhR knockout subjects. The 
expression of genes that are active during spermiogenesis, 

including Prm1 and Prm2, which encode protamine, was 
affected [119]. These protamine replace histones late in 
spermatogenesis and contribute significantly to sperm 
head condensation [123]. Hspa2 encodes a heat shock 
protein specifically expressed in spermatogenic cells, act-
ing as a chaperone for the transition proteins that precede 
protamination. Disruption of HSPA2 is associated with 
poorly remodeled germ cells with residual mitochondria 
that generate increased reactive oxygen species. All three 
of these genes showed lower levels of expression in AhR 
knockout testes compared to wild-type testes [124].

Spermiation
Spermiation, the process by which mature sperms are 
released into the lumen of the seminiferous tubules, sig-
nifies the conclusion of spermatogenesis. AhR modu-
lates the molecular and cellular events needed for the 
separation and liberation of mature sperm from Sertoli 
cells, facilitating the completion of spermatogenesis, 
including the disassembly of Sertoli–spermatid junc-
tions, cytoskeletal remodeling, and the local regulation 
of growth factors and cytokines [125]. When AhR is acti-
vated by potent ligands, AhR induces enzymes as CYP1 
A1 and alters junctional proteins as connexins in a way 
that disrupts normal spermiation, prematurely detach-
ing immature spermatozoa and ultimately compromis-
ing sperm quality as showed in exposure to TCDD [91, 
126]. In other rodent models, AhR knockout or ligand‐
induced activation correlates with abnormal protamine 
expression (Prm1, Prm2), dysregulated Aurora kinase A, 
and premature breakdown of actin‐based cytoskeletal 
structures, leading to defective spermiation [24, 127]. In 
summary, the AhR appears to be a critical factor in steer-
ing spermiogenesis, taking an active role in the ordered 
evolution of sperm cells and their final discharge during 
spermiation [128].

Overall, AhR signaling—whether through potent exog-
enous ligands such as TCDD or via endogenous modu-
lators—can alter the expression of cell‐cycle regulators, 
structural proteins (e.g., Aurora Kinase A), and sperma-
tid‐specific genes (Prm1, Prm2, Hspa2). In  vivo rodent 
evidence strongly supports the notion that overactivation 
of AhR by TCDD disrupts each major phase of spermato-
genesis, from spermatogonia proliferation to the release 
of mature sperm. Although human data are less experi-
mentally controlled, the Seveso cohort studies point to 
similar effects on sperm quality and overall reproduc-
tive health [33, 88]. A consistent theme is that ligand‐
independent AhR plays a permissive or positive role 
in normal germ cell development, whereas exogenous 
ligand‐activated AhR (particularly with high‐affinity toxi-
cants like TCDD) often inhibits cell‐cycle progression, 
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reduces sperm output, and alters sperm morphology. The 
precise outcomes can depend on factors such as ligand 
potency, timing of exposure, and species‐specific differ-
ences in AhR signaling [21, 74, 95, 96, 100, 129, 130].

Exploring AhR signaling in male reproductive 
health
Reproduction is a crucial biological event, and any signs 
of threatened reproductive function provoke significant 
responses in the scientific community and public media 
[131]. Despite receiving comparatively less attention, 
male reproductive function is a concern in the Western 
world, with infertility affecting approximately 15% of all 
couples [132]. Studies using AhR knockout mice have 
demonstrated that AhR deficiency is associated with 
defects in the seminiferous epithelium, the presence of 
multinucleated giant cells, hypocellularity, apical slough-
ing, and an increased count of retained elongated sper-
matids [119]. Furthermore, the modification of the AhR 
pathway, through the use of agonists or antagonists has 
led to changes in spermatozoa morphology and acro-
some integrity via the regulation of the Dnah1 gene [90]. 
Table 1 summarizes some of AhR’s agonists and antago-
nists that interfere with reproductive system function of 
males.

Hormonal control
Spermatogenesis is dependent on the pituitary hormone, 
follicle-stimulating hormone (FSH), and locally produced 
androgens in response to the luteinizing hormone. These 
hormones not only nurture oocytes but also produce 
steroid hormones that ensure optimal functioning condi-
tions in the female reproductive system [175, 176]. Most 
AhR/steroid receptor interactions have been studied in 
human breast cancer and endometrial carcinoma cell 
lines [176]. In one study, the activation of AhR by xenobi-
otics was shown to prompt the degradation of the andro-
gen receptor [177]. Another study demonstrated low 
fertility in AhR KO mice along with degenerative altera-
tions in the testes, germ cell apoptosis, and a decreased 
number of early spermatids [178]. Most recently, work 
has been published demonstrating that the abolishment 
of AhR signaling led to a decline in LH levels in rat serum 
[90].

AhR interaction with steroid hormone receptors
Steroid hormones play critical roles in the regulation 
of both human and animal fertility. In particular, male 
androgens, such as testosterone, function as primary 
inducers of the development of primary and secondary 
genital organs, in addition to libido potency [179]. The 
interplay between AhR and steroid hormone receptors 

is pivotal in regulating diverse physiological processes. 
Disruptions in steroid hormone synthesis, activity, or 
metabolism have been associated with various male 
reproductive issues. These include varicocele, erectile 
dysfunction, and infertility [180]. Such disturbances also 
impact female reproductive processes, affecting follicular 
dysfunction and atresia [180]. Previous in  vitro experi-
ments showed the competitive binding of AhR-ARNT 
complexes in HEC-1 A human endometrial carcinoma 
cells. This inhibits the binding of estrogen receptor alpha 
(ER-alpha) to imperfect estrogen response elements 
(EREs) [181, 182]. The activation of AhR can modulate 
the activity of steroid hormone receptors, especially the 
estrogen receptor, with potential substantial effects on 
endocrine function and overall health. This implies a 
crosstalk between AhR and estrogen receptor signaling 
pathways. Furthermore, certain environmental chemicals 
can bind directly to steroid hormone receptors, mimick-
ing their function, and potentially causing adverse effects 
on both wildlife and humans [58, 183].

In vivo, recent studies have demonstrated that AhR-
dependent mechanisms inhibit the growth of estrogen 
receptor-positive breast cancer cells in mouse xenografts 
[184]. The activation of AhR by Carbidopa, decarboxy-
lase inhibitor, induces nuclear localization, leading to an 
increase in AhR transcriptional activity—effects that are 
nullified by an AhR blocker [185]. Studies on porcine fol-
licular cells indicated that TCDD exposure led to a reduc-
tion in estrogen and progesterone synthesis through 
the use of AhR or ER blockers [186]. Dioxin has been 
observed to cause reproductive abnormalities including 
endometriosis, teratogenesis, abortion, decreased fertil-
ity, and endocrine disruption, particularly in luteal and 
follicular steroidogenesis in an AhR-dependent man-
ner [187]. Additionally, prior studies suggested that AhR 
activity is crucial for cell proliferation. The AhR signaling 
pathway acts as a critical transcription factor in trophec-
toderm cells, influencing the cell cycle by modulating 
genes targeted by AhR and potential genes involved in 
trophectoderm cell proliferation [188]. The interaction 
mediated by AhR with steroid hormone receptors sig-
nificantly affects the regulation of endocrine function. 
Research suggests that AhR can inhibit estrogen signal-
ing by attaching to estrogen-responsive elements and 
accelerating estrogen receptor degradation [189]. This 
interaction can result in modified hormone synthesis, 
increased ligand metabolism, reduced receptor levels, 
and interaction between AhR and steroid hormone sign-
aling pathways at the transcriptional level [190]. A recent 
study revealed that administering resveratrol, which is 
considered to be an AhR agonist, to male rats enhances 
the steroidogenesis of the testosterone hormone [90].
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AhR and the regulation of the hypothalamic‑pituitary–
gonadal (HPG) axis
Studies have demonstrated a significant reduction in FSH 
and LH during the preovulatory period in female rats 
exposed to TCDD or related AhR ligands. This strongly 
suggests that the AhR may be partly responsible for the 
dysregulation of the hypothalamic-hypophyseal axis, 
which regulates spermatogenesis and androgen biosyn-
thesis [191, 192]. Furthermore, the activation of AhR-
induced suppression of gonadotropin surges has been 
attributed to a decreased responsiveness of the hypo-
thalamus to the positive feedback from estrogens, with-
out influencing preovulatory serum estrogen levels [191, 
193]. This suggests reproductive toxicity linked to AhR 
activation [58, 90, 194].

Experiments with exogenous Gonadotropin-Releasing 
Hormone (GnRH) indicate that TCDD-induced inhi-
bition of gonadotropin surges may be due to insuffi-
cient production and/or release of GnRH, implying an 
impact of TCDD on the central nervous system [195]. 
The observed inhibition of gonadotropin surges is linked 
to a decrease in hypothalamus responsiveness to estro-
gen feedback. This hypothesis is backed by the reversal 
of TCDD effects with higher estrogen concentrations 
[189]. The intricate relationship between the two is 
further demonstrated by the interaction between aryl 
hydrocarbon and estrogen-mediated signaling pathways, 
as evidenced by the partial estrogen antagonist, tamox-
ifen [196]. The expression of AhR signaling pathway 
members, especially in areas of the brain that control 
reproductive functions, emphasizes the complexity of 
AhR involvement. The coincidence of AhR gene expres-
sion with that of Glutamic Acid Decarboxylase 67, vital 
for Gamma-Aminobutyric Acid synthesis, suggests its 
potential role in regulating GABAergic neurons influenc-
ing the onset of puberty and gonadotropin surges [58, 69, 
100].

Additionally, research shows that low doses of TCDD 
expedite puberty and HPG axis maturation in female 
rats—a compelling indication of complex interaction 
[197, 198]. The antagonism between AhR and estrogen 
receptor (ER) signaling pathways plays a substantial role 
in the estrogen-sensitive pituitary gland. This is evident 
in the interaction between AhR and ERα in both prol-
actin-secreting and gonadotropin-secreting cells [199]. 
TCDD displays a variety of effects, such as preventing 
E2-induced prolactin expression, encouraging LH-ß and 
ERα mRNA expression, and restraining FSH mRNA 
in the pituitary [196]. Intriguingly, TCDD reduces the 
release of prolactin, potentially due to increased dopa-
mine secretion [200]. Developmental stage sensitivity to 
TCDD is clear, as it lessens fetal gonadotropin produc-
tion without affecting adults. The influence of TCDD 

on GnRH release and the calcium’s role in mediating 
these effects amplify the intricate mechanisms involved 
[201]. Furthermore, TCDD changes the metabolism of 
the hypothalamus and pituitary gland, impacting lipoic 
acid content, ATP levels, and gonadotropin secretion 
[202]. Thyroid hormones, which the HPG axis regulates, 
are also influenced by TCDD, with conflicting findings 
observed on T4 and T3 levels. The TCDD-mediated 
induction of UDP-glucuronosyltransferase might con-
tribute to decreased thyroid hormone levels [203].

Biological effects of AhR in male reproduction
The specific role of AhR in spermatogenesis has not been 
extensively studied, despite the well-established effects 
of AhR activation on cellular processes like the cell cycle, 
stem cell proliferation, and tissue differentiation [119]. 
It appears that AhR activity is crucial for cell prolifera-
tion and progression through the cell cycle [204, 205]. 
Conversely, some studies suggest that AhR signaling 
has anti-proliferative effects as its activation can induce 
cell cycle arrest at the G1/G0 phase [204]. AhR has been 
observed in the cells of the seminiferous epithelium, 
including both Sertoli cells and germ cells, as well as in 
Leydig cells of the interstitial tissue [206]. In vitro stud-
ies of cell cycle dynamics with ongoing TCDD exposure 
showed inhibited proliferation and G1-phase cell cycle 
arrest in various cell types, including hepatocytes [188], 
neuronal cells [207], thymocytes [188], and many kinds 
of cancer cells [105, 208] through activating AhR [209]. 
Broadly speaking, it should be noted that the effect of 
AhR on cell proliferation may vary based on the cell type 
and the specific phase of the cell cycle [36].

A substantial body of research suggests that the 
absence of AhR ligand binding or AhR activation may 
contribute to inflammation [210], apoptosis [119], and 
oxidative stress in sperm leading to DNA damage [211]. 
A study revealed that AhR expression in the rat semi-
niferous tubule is restricted to primary pachytene sper-
matocytes during stages VII–XI and round spermatids 
during stages II–XIV of the spermatogenic cycle [212, 
213]. In contrast, both AhR and ARNT were found to 
be expressed in all stages of the seminiferous tubules in 
human testes [212]. The presence of AhR in sperm has 
suggested a mechanism by which environmental diox-
ins, polycyclic aromatic hydrocarbons, and polyhalogen-
ated biphenyls could directly affect sperm function [214]. 
Mice deficient in AhR show decreased male fertility, 
sperm count, and weights of seminal vesicles and dorso-
lateral prostate [119]. Recent reports have also identified 
AhR immunoreactivity in the Sertoli cells of both rat and 
human testes [101]. Additionally, AhR signaling is needed 
to induce the expression of indoleamine 2,3-dioxygenase. 
Several studies have shown that this enzyme initiates the 
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pathway of tryptophan catabolism [215, 216]. Further-
more, a deficiency in indoleamine 2,3-dioxygenase has 
been associated with significant increases in pro-inflam-
matory markers and the number and percentage of mor-
phologically abnormal sperm [217, 218].

The role of AhR agonists in spermatogenesis
Effects of cigarette smoking and benzo‑α‑pyrene exposure
The decline in sperm counts and motility, along with 
abnormal sperm morphology, are among the negative 
consequences linked to cigarette smoking, which con-
tains Benzo-α-pyrene [158]. This compound serves as 
an AhR agonist and can harm human health by caus-
ing DNA adduct formation and apoptosis in seminifer-
ous tubules [219]. Furthermore, co-culture experiments 
involving human sperm and benzo-α-pyrene have dem-
onstrated premature acrosome reactions and acceler-
ated hyperactivation, both of which result in dysmorphic 
sperm and decreased sperm counts in exposed men 
[220]. Numerous studies have illustrated the destructive 
impact of Benzo-α-pyrene on sperm motility, suggesting 
alterations in mitochondrial function, the up-regulation 
of pro-apoptotic genes at the mitochondrial level, and 
DNA damage [221]. Similarly, wild-type mice exposed 
daily to Benzo-α-pyrene showed lower sperm counts and 
subfertility, and the repercussions are seen in subsequent 
generations [222]. Metabolically activated Benzo-α-
pyrene leads to an increase in ROS generation, inducing 
oxidative stress, amplified lipid peroxidation, and the 
activation of caspases and endonucleases [159]. Moreo-
ver, the toxic effects of Benzo-α-pyrene are highlighted 
in in  vitro and in  vivo studies, depicting p53-mediated 
male germ cell apoptosis [223]. This process involves 
the activation of caspases 3, 6, 8, and 9, modification of 
Bcl-2, modulation of the Fas/FasL system, and activation 
of MAPKs (ERK 1/2, JNK 1/2, P38 MAPK) which con-
tribute to p53 phosphorylation [158]. Interestingly, stud-
ies suggest a negative connection between p53 and AhR 
activity, implying a potential counteracting role of AhR 
against p53 activity [224]. Exposure to Benzo-α-pyrene 
involves AhR activation, nuclear translocation, DNA 
binding, and the subsequent decrease in the transcrip-
tional activation of CYP1 A1 in various tissue systems 
[225]. Experimental studies have shown that curcumin 
and resveratrol, which function as AhR antagonists, can 
effectively shield against Benzo-α-pyrene-induced tes-
ticular germ cell apoptosis [226]. This protective effect 
corresponds to reduced protein and mRNA expression 
of CYP1 A1, diminished total AhR levels, and inhibited 
nuclear translocation of AhR [11, 158, 159, 227].

Activation of MAPK pathways and glucose uptake
Recent empirical evidence robustly supports the involve-
ment of the JNK signaling pathway in maintaining 
blood-testes barrier function and facilitating germ cell 
migration. Studies have shown that the activation of the 
JNK signaling pathway mitigates the disruptive effects of 
CdCl2 on the blood-testes barrier in adult rats [228, 229]. 
The ERK signaling pathway plays a direct regulatory role 
in apoptosis, mitosis, and the progression of germ cell 
meiosis [230]. Furthermore, the meiosis of spermatocytes 
depends on the activation of the ERK signaling pathway, 
as demonstrated in co-culture experiments involving 
stem cells and pachytene spermatocytes [122].

Curcumin and resveratrol, which act through AhR, ini-
tiate the activation of ERK, p38 MAPK, and JNK path-
ways via the AhR pathway [158, 231–234]. The activation 
of the p38 MAPK signaling pathway correlates with an 
elevation in GLUT1 mRNA levels, promoting glucose 
uptake. Importantly, most genes associated with the 
MAPK pathway are present in immature rat stem cells. 
The p38 MAPK signaling pathway is pivotal in promoting 
JAM-B transcription in response to interleukin-1α stim-
ulation in these cells. Additionally, both the p38 MAPK 
and ERK signaling pathways play a role in regulating cell 
junctions [235]. Resveratrol administration to male rats 
increases the percentages of normal sperm morphology 
and enhances acrosomal integrity as well as testicular 
parenchyma features through Dnah1 mRNA regulation 
[90].

Environmental impacts of AhR on the male reproductive 
system
Dioxin or TCDD, a well-established environmental con-
taminant, is associated with reproductive defects (such 
as endometriosis, teratogenesis, abortion, and dimin-
ished fertility) and endocrine disruption, affecting luteal 
and follicular steroidogenesis [236]. It is believed that the 
toxic effects of TCDD are primarily mediated through its 
ability to activate AhR [237]. Additionally, studies have 
proven that mice lacking a functioning AhR are resistant 
to dioxin toxicity [69]. Recent studies suggest a role for 
oxidative stress, induced by AhR-mediated production 
of reactive oxygen, in dioxin toxicity [157, 238]. Dioxin-
induced production of mitochondrial reactive oxygen 
species in the testis and other tissues and organs has also 
been reported [239]. Moreover, dioxin can interfere with 
endocrine functions during development and adulthood, 
due to the AhR pathway’s crosstalk with several other 
signaling pathways, including the ER, retinoblastoma 
protein, hypoxia, NFκB, and TGF-β [240].

Diesel exhaust particles are known to increase serum 
concentrations of testosterone and the weight of the 
accessory glands in rats [241, 242]. These particles 



Page 16 of 25Bustani et al. Reproductive Biology and Endocrinology           (2025) 23:70 

contain polycyclic aromatic hydrocarbons that activate 
AhR and decrease sperm production. Additionally, stud-
ies have demonstrated a decrease in the number of sperm 
and Sertoli cells in mature rats exposed to diesel exhaust 
particles [150]. The effects of diesel exhaust on sperma-
tids in the testis and epididymis are dependent on AhR 
[121, 243].

A recent study found that long-term exposure of Zebra 
fish to an AhR agonist, known as nuburon, led to repro-
ductive toxicity, which was apparent through a decrease 
in the number of sperm and an increase in oxidative 
stress levels due to the hyperactivity of the AhR pathway 
[3]. Moreover, exposing mice to chloro-choline chloride, 
a plant growth enhancer, could cause environmental 
concerns through an increased incidence of reproduc-
tive toxicity. This toxicity arises from the activation of 
the AhR/PERK axis, which subsequently leads to poor 
semen quality and degenerated testicular tissue [4]. How-
ever, some environmental pollutants, such as tris(2,3-
dibromopropyl) iso-cyanurate, can trigger CYP19a1 
toxicity directly via the estrogenic receptor in an AhR-
independent mechanism, as revealed in an investigation 
run on a mouse-spermatogenic cell line [5].

Phthalate‑induced male reproductive toxicity
Phthalates are used extensively to enhance the durabil-
ity of plastics. Studies have shown that Di(2-ethylhexyl) 
phthalate (DEHP) can cause male reproductive toxic-
ity [244]. This toxicity involves effects on spermatogen-
esis, disrupting self-renewal, meiosis, and spermatogonia 
activities [245]. Moreover, phthalates may inhibit testos-
terone synthesis by impacting the gonadal axis, thereby 
reducing the quality and quantity of sperm and leading to 
reproductive disorders [246]. A previous study suggested 
that phthalates caused DNA damage and apoptosis in 
sperm, affecting sperm density, vitality, and progressive 
motility. This decrease in sperm quality, including DNA 
damage and impaired motility, has been linked to testicu-
lar spermatogenesis disorders [247, 248]. Additionally, 
phthalates increase the expression of CYP1 A1, sug-
gesting AhR pathway activation, which has a variety of 
effects on different cell functions [249, 250]. Remarkably, 
phthalate treatment seems to promote the nuclear accu-
mulation of AhR and ARNT, both localizing to the sper-
matogenic cell nucleus. Interestingly, as the downstream 
gene targets of the AhR/ARNT signaling system, the lev-
els of CYP1 A1, CYP1 A2, and CYP1B1 were significantly 
increased following phthalate exposure [165]. Phthalates 
also seem to induce impairment of blood-testis barrier 
integrity, which is crucial for normal spermatogenesis 
[251].

Resveratrol as an AhR antagonist
Resveratrol is a phytochemical present in peanuts, 
grapes, blueberries, rhubarb, and wine, possessing cyto-
protective and antioxidant properties. It functions as an 
antagonist of the AhR, with one of its mechanisms involv-
ing the inhibition of AhR expression [160, 252]. Moreo-
ver, resveratrol obstructs the activation of CYP1 A1 and 
CYP1B1, and this action is associated with a decrease 
in ROS production [253]. The protective effect of res-
veratrol on ROS generation is highly significant because 
peroxidation of polyunsaturated fatty acids can result in 
lowered membrane fluidity and reduced activity of mem-
brane enzymes and ion channels, potentially endanger-
ing sperm motility [254]. Researchers have detailed the 
mechanism behind resveratrol’s actions on AhR, empha-
sizing its capability to restore the reduction in ERK and 
p38 MAPK phosphorylation prompted by AhR’s ligand 
agonists [158, 231]. Resveratrol defends cells from DNA 
damage and apoptosis by moderating the anti- and pro-
apoptotic mediators, thus enhancing the antioxidant sta-
tus [222]. Resveratrol inhibits the enzymatic activity of 
various cytochrome P450 s and deters their transcription 
through the antagonism of AhR, implying that resvera-
trol might lessen cells’ cancer-causing exposure, includ-
ing TCDD [159, 222].

Lycopene supplementation alleviates male infertility
Lycopene is a carotenoid antioxidant located in plants, 
such as tomatoes. Lycopene supplementation studies 
in humans and animals have demonstrated potential in 
alleviating male infertility where the sperm count, and 
viability increased with Lycopene treatment [255]. Fur-
thermore, Lycopene can abate testicular toxicity, thus 
offsetting the harmful effects of pollution by managing 
the CYP450 s homeostasis and the AhR/ARNT signal-
ing system [245]. Studies have shown that administering 
Lycopene to rats mitigated nearly all testicular structural 
damage, which included desquamative germinal cells and 
the slowing of spermatogenesis [251, 256, 257]. Current 
evidence suggests that lycopene functions as an antago‑
nist (or at least an inhibitor) of AhR. Additionally, Lyco-
pene precipitated a substantial decrease in the nuclear 
accumulation of AhR and ARNT, while their downstream 
target genes, inhibitors of CYP1 enzymes (CYP1 A1, 
CYP1 A2, and CYP1B1) were significantly reduced to 
normal levels. Concurrently, the values of sperm motility, 
number, and density exhibited an increase [56, 258].

Curcumin supplementation alleviates male infertility
Curcumin is a naturally occurring plant polyphenol 
found in the ancient Indian spice Turmeric, boasting 
various beneficial properties. It is known for its anti-
oxidative and anti-inflammatory activity [168, 259]. It 
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has been reported that curcumin acts as both an agonist 
and antagonist for the AhR depending on the context of 
exposure [81, 259]. Without strong ligands like dioxin, 
curcumin mildly stimulate AhR, effectively behaving as 
a weak agonist by upregulating certain AhR-responsive 
genes [81]. Conversely, when potent ligands are present 
or when the cellular environment includes heightened 
AhR sensitivity, curcumin frequently serves as an antag-
onist by blocking ligand binding, promoting AhR deg-
radation, or altering co-factor interactions in a way that 
diminishes AhR-driven gene expression [169, 259]. A 
few studies indicate that curcumin can prevent testicu-
lar germ cell apoptosis under various stressful conditions 
[260]. Curcumin enhances resveratrol’s effectiveness, and 
together, they regulate p53 phosphorylation specifically 
at ser 15 involving MAPKs [159]. Curcumin can also mit-
igate oxidative stress [261] and inflammation, which are 
two major contributors to male infertility [260].

The affinity of selected AhR ligands
Table  2 provides an overview of the relative binding 
affinity of various AhR ligands, indicating whether each 
ligand exhibits high or low affinity. This summary, based 
on findings from several studies, highlights that potent 
agonists such as TCDD and FICZ bind with high affin-
ity. In contrast, other compounds—like benzo[a]pyrene, 
DEHP, and several dietary modulators (resveratrol and 
curcumin)—generally display lower affinity.

Epigenetic modifications and transgenerational 
effects
Epigenetic landscape changes induced by AhR activation
Transgenerational inheritance refers to the transfer of 
traits or characteristics from one generation to the next, 
not through alterations in DNA sequences, but rather via 
modifications of the epigenome. Environmental factors 

can trigger these modifications and potentially influence 
the phenotypes of the progeny. Several studies suggest 
that environmental stimuli can modify parental traits, 
thus influencing the phenotypes of offspring via gametic 
epigenetic inheritance. As a result, the role of epigenetic 
factors and their heritability merit careful consideration 
in the context of disease risk assessment [266, 267]. The 
AhR plays a significant role in influencing the epige-
netic landscape, particularly regarding transgenerational 
effects resulting from chemical exposures. Research 
indicates that AhR activation alters DNA methylation 
patterns and gene expression, which can affect pheno-
typic outcomes across generations [268]. In zebrafish 
exposed to AhR agonists such as benzo-α-pyrene and 
7,12-dimethylbenz(a)anthracene, changes in DNA meth-
ylation and gene expression have been discovered, sug-
gesting a potential role of AhR-mediated epigenetic 
modifications in transgenerational effects [269]. Hence, 
the observed phenotypic alterations in AhR lineage 
zebrafish raise questions about the contribution of epige-
netic changes in the AhR-ARNT signaling regulation to 
reproductive and skeletal phenotypes. Understanding the 
persistence and reversibility of these effects is vital for a 
comprehensive assessment of the impact of AhR activa-
tion on transgenerational outcomes [270–272]. Further-
more, it has been demonstrated that AhR activation can 
modulate DNA methylation patterns in specific genomic 
regions, impacting the expression of genes involved in 
various cellular processes [273]. Additionally, histone 
modifications, such as acetylation and methylation, may 
be influenced by AhR signaling, further contributing to 
the regulation of gene expression [273].

Transgenerational inheritance of AhR‑induced 
reproductive alterations
Some studies suggest that environmental cues can induce 
parental changes and affect the phenotypes of offspring 
through gametic epigenetic inheritance. As a result, epi-
genetic factors and their heritability should be considered 
during disease risk assessment. One intriguing aspect of 
AhR signaling is its potential to induce transgenerational 
effects, which refer to the transmission of traits or altera-
tions in phenotype across generations, without direct 
exposure to the environmental stimuli. Research suggests 
that AhR activation could lead to reproductive changes 
that can be passed on to following generations [269, 270, 
274, 275].

AhR‑mediated epigenetic dysregulation and male fertility
Several factors seem to contribute to the outcome of gene 
transcriptional regulation by AhR, such as the nature of 
the ligand and its further metabolism by AhR-induced 
enzymes, the local tissue microenvironment, and the 

Table 2  Relative binding affinity of selected AhR ligands

Ligand Role Affinity Reference

TCDD Agonist High [28, 195]

Benzo[a]pyrene Agonist Low [195]

FICZ Agonist High [195]

DEHP (Phthalate) Agonist/Modulator Low [35]

Resveratrol Antagonist Low [12, 29, 107]

Curcumin Mixed (Agonist/
Antagonist)

Low [26, 81]

Lycopene Antagonist/Modulator Low [56, 256, 262]

Galangin Partial Agonist/
Antagonist

Low [154, 263]

α-Naphthoflavone Antagonist/Partial 
Agonist

Low [90, 107, 264, 265]
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presence of co-regulators or specific transcription fac-
tors in cells. Studies have suggested that AhR activations 
may lead to epigenetic dysregulation in the male repro-
ductive system, impacting the development and function 
of sperm [55, 267, 268, 276]. Epigenetic modifications 
driven by AhR signaling in the male germline can affect 
the expression of genes involved in spermatogenesis, 
sperm motility, and fertilization. Understanding these 
molecular shifts is crucial for discerning the connections 
between environmental exposures, AhR activation, and 
male fertility outcomes [268, 277, 278].

In summary, the AhR significantly impacts spermato-
genesis, hormonal regulation, and reproductive func-
tion, asserting its importance as a regulator of male 
reproductive health. It underlines its role in male fertility 
by directing spermiogenesis and ensuring the comple-
tion of spermiation. AhR’s influence on both reproduc-
tive and endocrine processes is demonstrated through 
its interaction with steroid hormone receptors, particu-
larly estrogen receptors. Male reproductive function can 
be compromised by environmental chemicals or factors 
such as phthalates, benzo-a-pyrene, dioxins, and ciga-
rette smoke, through AhR activation. This may subse-
quently lead to sperm abnormalities and infertility. The 
complex relationship between AhR and the hypotha-
lamic-pituitary–gonadal axis emphasizes its regulatory 
role in hormonal and reproductive processes. AhR acti-
vation, which can influence reproductive outcomes, may 
also affect estrogen signaling and modulate gonadotropin 
surges. Furthermore, AhR-mediated epigenetic modifi-
cations may affect gene expression in the male germline, 
potentially impacting sperm development and fertility.

Most studies examine the effects of xenobiotic AhR 
ligands such as TCDD are based on animal or in  vitro 
studies with cell lines. There are few epidemiological 
studies involving people accidentally exposed to xenobi-
otics. Therefore, more human studies are crucial to verify 
the effects of environmental AhR ligands on the male 
reproductive system. Currently, there are no effective 
treatments for reversing the toxic effects of environmen-
tal contaminants like dioxins on the male reproductive 
system.

Interestingly, dietary AhR ligands or antagonists, 
including lycopene, resveratrol, and curcumin, may 
offer some protection against male reproductive toxicity 
caused by environmental pollutants. Their potential abil-
ity to reduce oxidative stress and AhR activation suggests 
a possible treatment path for enhancing male reproduc-
tive health (Graphical Abstract).
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