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The massive tissue remodeling occurring along with 
decidualization and placentation is accompanied by dra-
matic alterations in composition, form, and functional-
ity of the extracellular matrix (ECM), which is constantly 
deposited and degraded to support the evolving tissues 
[2]. The ECM is a net of fibrillar proteins, proteogly-
cans and glycoproteins that can interact with a variety of 
proteins, receptors and soluble factors, thus influencing 
a plethora of physiological and pathological processes 
[3–7].

During a healthy pregnancy, the ECM exerts both 
mechanical and biochemical functions, maintaining uter-
ine structural integrity, facilitating embryo adhesion, and 
regulating trophoblast invasion into the endometrium 
(Fig. 1) [8, 9]. The ECM is readily degraded and built up 
again along with the processes of decidualization and 
placentation. This massive ECM remodeling is driven by 
the local cellular milieu and by secreted or cell-associated 
components in a framework of dynamic reciprocity [3]. 

Introduction
Pregnancy is a complex process that comprises separated 
and multistep events, including decidualization, implan-
tation, and placentation [1]. For the maintainance of a 
healthy intrauterine environment capable of supporting a 
successful embryo implantation and a functional placen-
tation, the efficient remodeling of tissue and vasculature 
within the uterus during the menstrual cycle and preg-
nancy is a basic requirement [2].
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Through their receptors, primarily integrins, cells sense 
physical and biochemical characteristics of the microen-
vironment, including substrate stiffness, pressure, shear, 
and stretch, and convert these cues into intracellular sig-
nals that regulate cell structure and behaviour [3].

The proficient spatio-temporal regulation of ECM 
remodeling is crucial to support a physiological preg-
nancy and an altered expression of matrix molecules in 
the womb is associated with pathological conditions of 
reproduction and pregnancy, such as placenta accreta 
and preeclampsia [10–12].

Despite these observations, the study of ECM in preg-
nancy still represents an almost unexplored field and the 
data regarding the role of ECM molecules are sparse and 
disorganised.

The first evidence regarding the study of ECM mol-
ecules in the decidua and the placenta dates back to the 
1980s and 1990s, as in the case of collagens and laminins 
[13–16]. Over time, more and more knowledge regarding 
the mechanisms by which they are remodeled and their 
functions in pregnancy has been gathered. Moreover, 
additional types of ECM components have been identi-
fied as relevant to these processes. Thus, in the present 
review, we aim to provide a comprehensive overview 

of the functions of key ECM components in the mile-
stones that occur throughout gestation, and to relay 
state-of-the-art information concerning the mechanisms 
of matrix remodeling in physiological pregnancy and in 
reproductive and obstetric complications. Because of the 
intricate nature of the ECM molecules, which frequently 
engage in multifaceted mechanisms, a clear separation of 
their contributions to each distinct phase of pregnancy 
is not always feasible. However, as provided in the fol-
lowing paragraphs and Table  1, the review is organized 
to describe the functions exerted by ECM components 
along with the specific processes of decidualization, blas-
tocyst adhesion, trophoblast invasion and placentation.

Decidualization: shaping the ECM to prepare the 
soil
The endometrium, the inner mucosal lining of the uterus, 
is a highly organized multicellular tissue that under-
goes a cyclic dynamic remodeling to establish a micro-
environment suitable for supporting a pregnancy. The 
endometrial cycle consists of two dominant phases: the 
proliferative phase, which is guided by oestradiol, follows 
menstruation and precedes ovulation, and the secre-
tory phase, which occurs after ovulation [17]. During 

Fig. 1  A massive extracellular remodeling occurs during the menstrual cycle and the early phases of pregnancy, being instrumental for the establish-
ment of a receptive decidua and guiding trophoblast cell differentiation and invasion. Created with Biorender
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the secretory phase, under the high levels of progester-
one released from the corpus luteum, the endometrium 
transforms into a receptive tissue that is suitable for 
implantation through a process known as decidualization 
[18]. In the absence of an embryo, the decidua is shed off 
through menstruation. On the contrary, when fertiliza-
tion occurs, the embryo breaches the endometrial lumi-
nal epithelium and is rapidly embedded in the decidual 
stroma [18]. The decidua contributes to early nutrient 
exchange, production of cytokines, and growth factors 
as well as supporting the development of new blood ves-
sels, modulates extravillous trophoblasts (EVT) inva-
sion, and acts as a protective barrier against infections 
and maternal host immune responses. An impairment of 
decidualization leads to a variety of pregnancy disorders, 
including infertility, recurrent miscarriages, and utero-
placental disorders [19].

The ECM composition of the endometrium, along 
with cell-matrix receptor expression, is regulated by 
sex steroids oestradiol and progesterone throughout 
the menstrual cycle, giving rise to dramatic shifts in tis-
sue structure and morphology. Cyclical changes in these 
hormones dictate the timing and functional capabilities 
of the endometrium to support nidation, through the 
dynamic remodeling of the ECM [20].

The key event in decidualization is the striking mor-
phological and functional differentiation of human endo-
metrial fibroblasts into specialized decidual stromal cells 
[21]. Despite being driven by hormones, this process is 
profoundly affected by microenvironmental cues, among 
which some ECM components, such as decorin, have 
been demonstrated to play a key role. Decorin is a small 
leucine-rich proteoglycan produced by both endometrial 
stromal cells and decidual cells [22, 23], primarily under 
the influence of interleukin-1 beta (IL-1β) [24]. During 
decidualization, decorin is essential for the differentiation 
of endometrial stromal fibroblasts into secretory decidual 
stromal cells [24]. Indeed, without decorin, these cells fail 
to fully differentiate, and exhibit a fibroblastic morphol-
ogy and a decreased expression of important markers for 
the initiation and maintenance of decidualization, such 
as insulin-like growth factor binding protein 1 (IGFBP1) 
and prolactin (PRL) [25].

Once fully differentiated, decidual stromal cells start 
secreting a plethora of ECM molecules that induce sig-
nificant changes in the composition and structure of the 
endometrial stroma (Fig. 2). A recent targeted proteomic 
analysis of the endometrial ECM benchmarked the ECM 
composition along with the menstrual cycle [26]. Gnecco 
et al. showed that the abundance of ECM glycoprotein 
fibronectin was greater in the proliferative phase, while 
collagen and laminin increased during the secretory 
phase, corresponding to the activity of progesterone 
(P4) in terms of epithelial gland maturation, vascular EC
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Fig. 2  The image highlights the differentiation of endometrial stromal cells into specialized decidual cells, illustrating the ECM components majorly 
secreted upon decidualization. Created with Biorender
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remodeling and differentiation of stromal fibroblasts 
[26]. In accordance, the literature pinpoints collagens and 
fibronectin as the main ECM components remodeled 
during decidualization.

Collagens
The most represented ECM components of the uterus 
are collagens, mainly type I, III, IV, V, VI and XVIII [27]. 
They are primarily produced by decidual stromal cells 
and organized in a meshwork surrounded by other ECM 
proteins such as elastin, proteoglycans and glycoproteins 
[27], as detailed better below. During decidualization, 
collagens undergo an extensive remodeling that is crucial 
for the development of a receptive endometrium and the 
establishment of a healthy pregnancy [28]. An important 
event in this process is the structural modification of col-
lagen types I, III, and V fibrils, which have been observed 
to rapidly thicken and rearrange around the decidual 
cells [29, 30]. The formation of these thick collagen I 
fibrils is mediated by biglycan, a class I small leucine-rich 
proteoglycan (SLRP) [31, 32], that in the endometrium is 
expressed by stromal cells, macrophages, T lymphocytes 
and endothelial cells [24, 33–35]. In the endometrium, 
biglycan is present at low levels, whereas its expression 
increases upon decidualization when it mainly serves as 
a structural scaffold to promote a regular ECM fibrillar 
organization [36]. Notably, the volume of these collagen 
fibres serves as a measurable indicator of decidualization 
efficacy and has been shown, in mouse models, to cor-
relate with the probability of early pregnancy progression 
[37].

Among all the collagen types, collagen I is the most 
represented. It provides biomechanical strength, resil-
ience, structural integrity, and the tensile properties 
necessary for the normal functioning of the uterus [38]. 
Its expression changes along with the menstrual cycle 
and is regulated by many factors, such as progesterone 
and oestrogen, prostaglandins, nitric oxide, and vitamin 
D [27]. The epigenetic mechanisms regulating decidual 
collagen I expression are different, as shown for colla-
gen type I alpha 1 chain (COL1A1), the major compo-
nent of collagen I together with collagen type I alpha 2 
chain (COL1A2). In pregnancy, it has been shown that an 
aberrant expression of COL1A1, due to the reduction of 
histone deacetylase 3 (HDAC3) activity or to a low meth-
ylation of the promoter of COL1A1, causes a defect of 
decidualization both in mice and in humans [39, 40].

However, the remodeling of collagen I relies also on 
other two processes. One is the post-translational modifi-
cations catalyzed by lysyl oxidases (LOXs), enzymes that 
produce intermolecular cross-links between collagen I 
fibres themselves and other proteins such as collagen III 
and IV and fibronectin (FN). The other is protein deg-
radation, which is mainly mediated by metalloproteases 

(MMPs) [41]. The equilibrium between collagen I depo-
sition and degradation is instrumental for uterine tissue 
integrity and the continuation of a healthy pregnancy, 
thus loss of this balance may lead to fertility and gesta-
tional problems. An increased tissue stiffness is a patho-
genic feature of uterine fibroids, while on the contrary, 
a reduced cervical cross-link density is observed in pre-
term birth [42]. An excessive tissue stiffness has also been 
found in the preeclamptic placenta, in which it increases 
independently from the gestational or maternal age [43].

Other collagens produced by decidual stromal cells are 
type IV and type XVIII [44, 45]. Collagen IV, one of the 
major components of basal membranes, is selectively up-
regulated during the menstrual cycle and decidualization, 
when its deposition increases around the spiral arteries, 
highlighting its role in decidual vascular remodeling [45].

Fibronectin
Fibronectin (FN), an important component found 
throughout the ECM in various tissues of the body, is 
abundantly present in decidua [46, 47]. Once secreted, 
FN molecules readily polymerize with each other, form-
ing viscoelastic fibrils that importantly influence cell 
migration and are essential for processes such as embry-
onic development and tissue repair [46]. Indeed, the for-
mation of FN fibrils, that typically appear to be stretched 
within healthy tissues, plays a key role in assembling a 
provisional ECM during embryonic development and 
wound healing [48]. Whereas an aberrant fibrils assem-
bly, leading to a more relaxed structure, is often observed 
in pathologic conditions, such as cancer and fibrosis [49]. 
In the uterus, FN relaxation has been shown to be depen-
dent on the menstrual cycle. Interestingly, the presence 
of relaxed FN fibrils is associated with the occurrence of 
endometriosis, such that they have been proposed as a 
potential tool for the development of a diagnostic radio-
tracer targeting endometriotic lesions [50].

During decidualization, FN supports the structural 
organisation of the evolving ECM by interacting with 
other stromal proteins, including collagen and proteogly-
cans, thereby creating a supportive scaffold [51].

Placentation: shaping the ECM to prepare the soil
Overall, ECM remodeling occurring during decidualiza-
tion is particularly crucial for creating optimal receptive 
conditions, allowing the following synchronization of 
functionally appropriate embryo implantation and pre-
paring the ground for blastocyst to adhere and invade the 
tissue.

Nevertheless, it must be underlined that decidual ECM 
functions extend beyond providing structural support to 
the evolving tissues and driving the subsequent tropho-
blast migration, as detailed in the following paragraphs. 
Indeed, it actively contributes to the modulation of 
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immune cell activation during decidualization, which is a 
process primarily aimed at initiating immunotolerance in 
the mother towards the foetus. In this context, collagen I 
has been shown to promote the differentiation of regula-
tory T (Treg) cells through the inhibition of the Notch1 
signaling pathway [52]. Treg cells are a subset of suppres-
sor CD4+ T cells that play a dominant role in the mainte-
nance of immunological self-tolerance, and are essential 
in promoting fetal survival avoiding the recognition of 
paternal semi-allogeneic tissues by maternal immune sys-
tem [53]. In the decidua, collagen I levels correlate nega-
tively with the number of proinflammatory Th17 cells, 
and positively with the number of immunosuppressive 
Treg cells, thus confirming its role in shaping an immu-
notolerant environment [52].

Another ECM component playing a role in immu-
notolerance is decorin. As stated before, a low level of 
decorin associates with decidualization defects, however 
an extremely high deposition of the molecule may nega-
tively affect the occurrence of a physiological pregnancy. 
In fact, decorin has been shown, by regulating mito-
chondrial metabolism, to guide macrophage polariza-
tion towards a pro-inflammatory (M1) phenotype at the 
expense of immune-suppressive (M2) cells [54]. Decidual 
macrophages represent the second largest decidual leu-
kocyte population (20–30%), and are involved in a tight 
crosstalk with decidual stromal cells [25]. The latter, 
through the secretion of cytokines as IL-4 and TGF-β, 
trigger macrophages to acquire an immunosuppressive 
M2 phenotype. M2 cells, in turn, also affect the func-
tions of decidual stromal cells, and later of trophoblasts, 
by secreting cytokines, such as IL-10, VEGF-A and TGF-
β, that play indispensable roles in decidualization, spiral 
artery remodeling and trophoblast invasion [25]. We can 
hypothesize that decorin takes part in this fine-tuned 
plethora of signals deriving from decidual stromal cells 
aimed at modulating macrophage polarization to support 
a correct decidualization. In accordance with this view, 
an increased decorin level is associated with an imbal-
anced decidual M1/M2 macrophage ratio and has been 
demonstrated to promote the occurrence of pregnancy 
complications such as recurrent pregnancy loss [54].

Apposition and adhesion: matrix to build the 
bridge
For a pregnancy to be established, initial apposition and 
adhesion of the blastocyst to maternal endometrium 
must occur in a coordinated manner. After entering the 
uterine cavity, blastocyst-stage embryos hatch from the 
zona pellucida and expose the trophectoderm, the outer 
layer that represents the primary interface with the endo-
metrial epithelium [55]. The blastocyst orients the inner 
cell mass proximal against the receptive endometrium, 
and the trophectoderm of the preimplantation embryo 

interdigitates with the microvilli called pinopodes pres-
ent on the surface of the endometrial luminal cells in the 
apposition phase. Subsequently, changes in the expres-
sion of ECM proteins and integrins contribute to the for-
mation of a stable adhesion between the embryo and the 
maternal tissue [56], as represented in Fig. 3.

Integrins are cell adhesion transmembrane receptors 
that, by binding to the ECM and the cell cytoskeleton, 
transduce biochemical and mechanical signals between 
cells and their environment. Each integrin is a heterodi-
mer that comprises an α-subunit and a β-subunit, bound 
in a noncovalent complex: 18 α- and 8 β-subunits have 
been characterized and form 24 functionally distinct het-
erodimeric transmembrane receptors [57].

The expression of integrins on the endometrial lumi-
nal cells is controlled by hormones and cytokines, oes-
trogen and IL-1 among others, and many integrins have 
been proposed to play a role in the apposition and adhe-
sion stages of implantation, as αvβ1, α1β1, α3β1, α6β1, αvβ5, 
and αvβ6 [56, 58]. These receptors interact with the ECM 
molecules present on the blastocyst, mainly laminins and 
syndecans, thus acting as a bridge and binding the troph-
ectoderm to the luminal endometrial surface [56, 59].

On the other side, the human blastocyst expresses 
αvβ3 as well as α3β1, α6β4, and αvβ5 integrins to further 
strengthen the adhesion with the endometrial surface. 
Interestingly, once the blastocyst gets in contact with 
the soluble factors present in the uterine fluid, as Wnt 
ligands and LIF, the intracellular trafficking and exposure 
of specific integrins on the trophectoderm occur [51, 60]. 
Among others, the exposure of α5β1 integrin on troph-
ectoderm cells allows the interaction with FN present on 
the luminal layer of the endometrium [60].

The major ECM component playing a role in this phase 
is hyaluronan.

Hyaluronan
Hyaluronan (HA) is a high molecular weight linear gly-
cosaminoglycan, composed of repeating disaccharides 
of D-glucuronic acid and N-acetyl glucosamine groups 
[61]. Despite its simple composition, HA exerts a num-
ber of functions, by influencing the hydration and physi-
cal properties of tissues, by interacting with other ECM 
molecules, such as aggrecan and versican, and by binding 
its cell-surface receptors CD44 and RHAMM. HA partic-
ipates in many physiological and pathological processes, 
such as cancer, in which it modulates cell differentiation 
and migration, immune cell activation and angiogenesis 
[61–63].

As for other ECM molecules, the levels of HA deposi-
tion in the endometrial stroma follow a cyclic fashion. In 
particular, peaks of HA deposition were observed during 
the mid-proliferative and the mid-secretory phase. The 
latter coincides with the time period when implantation 
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Fig. 3  The illustration represents the main ECM molecules serving as substrate for blastocyst adhesion to the luminal endometrial epithelium. Created 
with Biorender
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of the embryo would be initiated. A perivascular stain-
ing for HA was also observed throughout the menstrual 
cycle, with a higher intensity close to the spiral arter-
ies during the secretory phase [64]. The stage when HA 
staining is at minimum, prior to menstruation, coincides 
with the tissue regression, and this is assumed to be a 
result of the loss of the HA-associated water of hydration 
[65]. A similar spatio-temporal distribution of HA was 
demonstrated by Simoes Ricardo Santos et al., who com-
pared healthy women and patients with polycystic ovary 
syndrome (PCOS), and found that the latter are charac-
terized by an altered HA deposition in association with a 
dysregulated endometrial cycle [66].

During embryo apposition and adhesion, the pro-
duction of HA has been demonstrated to increase in 
the expanded and hatched blastocyst stages [67]. It has 
been postulated that, in this phase, HA acts as a linker 
by binding to CD44 receptors present on both embryo’s 
trophectoderm and endometrial epithelial cells, thereby 
facilitating the initial blastocyst adhesion. The injection 
of HA during the embryo transfer is nowadays explored 
as a strategy to improve embryo implantation in IVF 
cycles [68]. Interestingly, HA is involved in the natu-
ral selection of human embryos at implantation [69]. It 
was demonstrated that low-fitness embryos secrete high 
molecular weight hyaluronic acid (HMWHA), which, 
upon binding to CD44 on uNK cells, blocks the targeting 
and elimination of stressed/senescent cells. This results 
in sterile tissue inflammation through secondary senes-
cence and menstruation-like breakdown of the endome-
trium, irrespective of circulating progesterone levels [69].

Despite HA exerts its major function during blastocyst 
adhesion, it takes part in additional processes along with 
embryo implantation. It is interesting to note that once 
trophoblasts start invading the decidua, they begin to 
secrete large amounts of HA that function in an auto-
crine manner enhancing the proliferation and migration 
of trophoblasts themselves [70]. Moreover, trophoblast-
derived HA has been observed to instruct decidual mac-
rophages to polarize towards an M2 immunosuppressive 
phenotype by binding to CD44 and activating the PI3K/
Akt-STAT-3/STAT-6 signaling pathways [71], thus con-
tributing to the consolidation of immunotolerance initi-
ated during decidualization.

Trophoblast invasion: on the ECM road
Once the embryo adheres and breaches out the endome-
trial epithelium, trophoblasts penetrate and invade the 
uterine wall in a process crucial for a successful implan-
tation and the establishment of a healthy pregnancy. 
Indeed, an impaired trophoblast invasion associates with 
pregnancy disorders, such as preeclampsia [72].

The invasive capabilities of trophoblasts depend, on one 
hand, on the modulation of the expression of integrins 

that, through the binding with collagens, FN and other 
ECM proteins, activate the intracellular signaling cascade 
that drives cell migration [73] (Fig.  4). Integrin expres-
sion and exposure on the cellular membrane change 
along with trophoblast differentiation and function: the 
proliferative cytotrophoblasts are mostly characterized 
by the presence of α6β4 and α5β1, whereas the invasive 
trophoblast switches toward a prominent expression of 
α1β1 integrin [74]. A peculiar feature of invasive tropho-
blasts is the transient presence on the cell membrane of 
αIIbβ3 integrin, that is primarily recognized as a platelet-
associated integrin [75]. It has been hypothesized that 
the exposure of αIIbβ3 on trophoblasts probably results 
from the fusion with maternal platelet microparticles and 
mediates the interaction with decidual FN [76, 77]. For 
its capability to bind also fibrin, Snir et al. have proposed 
a role for αIIbβ3 integrin also in trophoblast maturation 
and as a repair mechanism at villous denudations sites, 
where fibrin deposits may induce trophoblasts prolifera-
tion and re-epithelization [77].

On the other side, trophoblast migration occurs 
through a massive stromal remodeling that relies on the 
activation of a complex proteolytic machinery [78–82]. 
Invasive trophoblasts, but also decidual stromal cells 
and macrophages, express high levels of MMPs, mainly 
MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MT1-
MMP and MMP-26, and urokinase plasminogen acti-
vator (uPA) [83, 84]. The expression of these proteases 
is controlled by many factors, and ECM components as 
well. This is the case of perlecan, a large heparan sulfate 
proteoglycan, that plays a crucial role during embryo 
implantation by facilitating trophoblast invasion and 
influencing its differentiation [62]. The presence of per-
lecan in both the trophectoderm and maternal tissues 
like the basal lamina highlights its importance in mediat-
ing interactions between the developing embryo and the 
maternal environment [85]. Perlecan exerts these func-
tions by modulating the activity of MMPs [86] in a fine-
tuned manner necessary to prevent the occurrence of 
pathologic conditions, like placenta accreta and PE [87, 
88]. Interestingly, low levels of perlecan have been found 
in late-onset pre-eclampsia, while an opposite direc-
tional change was observed in early-onset pre-eclampsia, 
reflecting the distinct placental pathologies of these clini-
cally different pre-eclampsia subtypes [87]. By regulat-
ing the activity of MMPs and simultaneously interacting 
with other ECM components like collagens, fibronectin, 
and laminin, perlecan contributes to the formation of a 
supportive scaffold that maintains the structural integrity 
of placental tissues [89], ensuring balanced invasion for 
placental anchoring, while preventing excessive invasion 
[90].

The main ECM components serving as substrates for 
EVT invasion and migration are laminins, collagens, FN 
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Fig. 4  Key extracellular components involved in EVT migration, which are found to be relevant in the invasion of the maternal decidua during the pro-
cess of embryo implantation. Created with Biorender
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and decorin, as illustrated in Fig. 4 and detailed in the fol-
lowing sections.

Laminins
Laminins are found predominantly in the basement 
membrane, a thin ECM layer that lines the epithelial and 
the endothelial sheets, and are structurally composed 
of three main chains recognized as α, β, and γ which 
are genetically distinguished and give rise to 15 differ-
ent known isoforms [91]. Laminins play a crucial role in 
cell adhesion, migration, survival, and differentiation [3], 
however they mainly exert adhesive functions. The lat-
ter is due to the formation, together with perlecan, of a 
molecular mesh that gives rise to honeycomb-like net-
works [92].

Laminins are a critical component of both the troph-
ectoderm basement membrane and the uterine decidual 
matrix and act as main drivers in the process of embryo 
implantation. Different laminins isoforms are expressed 
in the endometrium and they change along with the pro-
cess of decidualization [93]. In the non-pregnant uterus, 
laminins 2/4 and 10/11 are present in the basement 
membrane of the uterine epithelium, and the stromal 
ECM contains laminins 2/4 and 8/9 [94]. At the onset of 
implantation, laminins 2/4 and 8/9 expression disappears 
from the region of the stroma immediately surrounding 
the implanting embryo, and the stromal decidual cells 
begin to strongly express laminins 10/11 as they undergo 
decidualization. These patterns of laminin expression 
suggest that they may have specific effects on trophoblast 
function during implantation. Laminins 1 and 10/11 have 
been shown to exert distinct effects on trophoblast cell 
behaviour [95]. Laminin 1 promotes random migration 
and decreases spreading, whereas laminin 10/11 pro-
motes both spreading and persistent migration. When 
presented as adjacent substrates, cells stop at the bound-
ary and do not enter the region containing laminin 1. 
In contrast, trophoblast cells maintain strong cell–cell 
contacts on substrates of laminins 10/11. These effects 
suggest that these laminin isoforms influence the direc-
tion and quality of invasion of trophoblast cells during 
implantation. In mouse models, a decreased level of lam-
inin 4 and 5 is responsible for the inhibition of tropho-
blast invasion and vascular adaptation defects, overall 
leading to a failed implantation [96, 97]. Accordingly, in 
humans, high levels of these laminins characterize early 
pregnancy rather than the late stages, thus underlining a 
modulatory function during trophoblast differentiation 
and invasion of the decidua. A low level of laminin 4 and 
11 has been observed in preeclampsia [96, 98], further 
strengthening the concept that a tightly regulated expres-
sion of laminins is fundamental for a healthy pregnancy 
to be established.

Collagens
During embryo implantation, collagen type I, together 
with collagen IV, functions as an adhesive substrate for 
trophoblasts [99]. An increased collagen I deposition has 
been shown to suppress trophoblast cell migration and 
invasion and to associate with the occurrence of pre-
eclampsia [100]. Mechanistically, collagen I induces pre-
eclampsia-like symptoms by suppressing the proliferation 
and invasion of trophoblasts through the inhibition of 
the ERK and WNT/β-catenin signaling pathways [101]. 
Recently, also collagen III has been related to trophoblast 
migration and its upregulation has been associated with 
placenta accreta, a gestational disorder referable to an 
uninhibited trophoblast invasion [102].

Importantly, the proteolytic cleavage of collagen IV and 
XVIII by MMPs releases biologically active fragments 
that play a role in early pregnancy events. The degrada-
tion of chain α1 of collagen IV generates arresten, which 
is subsequently detectable in the peripheral blood stream. 
Intriguingly, arresten levels are significantly increased in 
plasma during the second and third trimester in women 
with preeclampsia compared with normotensive [103]. 
The C-terminal fragment of collagen XVIII, called end-
ostatin, is produced during embryo implantation by the 
activity of trophoblast-derived MMPs [104]. Interest-
ingly, once released endostatin inhibits trophoblast cell 
invasion by binding to integrin α5β1, highly expressed by 
EVT themselves, thus generating a sort of negative feed-
back loop [105]. In accordance, a high endostatin serum 
concentration, likely associated with a shallow tropho-
blast invasion, has been observed in women with pre-
eclampsia [106].

Fibronectin
In the phase of decidua invasion, FN expression is 
induced in infiltrating EVT in a TGF-β-dependent man-
ner [107, 108]. In turn, FN regulates trophoblast adhe-
sion and migration into maternal tissue through the 
activation of Erk and Akt signaling pathways. Unexpect-
edly, a high FN expression has been observed in the pla-
centa of preeclamptic patients and the molecule has been 
proposed as a useful predictor of preeclampsia develop-
ment [109]. Several mechanisms have been proposed to 
explain the elevation of FN levels in preeclampsia, such 
as vascular injury release, increased FN production, and 
enzyme degradation, yet the obscure role of FN in the 
disease remains unclear and debated. Recently, Su and 
colleagues showed that FN inhibited trophoblast inva-
sion and migration, and that trophoblast-derived FN 
may function in an autocrine manner by impairing cell 
motility [110]. Interestingly, the treatment with aspirin, 
a preeclampsia prevention agent, was able to reduce FN 
expression as well as its inhibitory effect on trophoblasts. 
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Further studies will be helpful to better clarify the role of 
FN alteration in the pathogenesis of preeclampsia.

Decorin
Decorin plays a major role in regulating trophoblast 
functions by limiting its invasion into the uterine lining 
[24] and preventing excessive invasion that could lead 
to complications like preeclampsia [8]. This is achieved 
through multiple mechanisms. First, decorin binds 
and stores TGF-β thus preventing its activity until it is 
cleaved by trophoblast-derived proteases [111]. Since 
TGF-β exerts an inhibitory function on EVTs migration 
[112], this mechanism allows the avoidance of uncon-
trolled over-invasion of the decidua [113]. Addition-
ally, decorin negatively regulates EVT proliferation and 
migration by binding multiple tyrosine kinase receptors 
(TKRs) [114]. Interestingly, by binding to vascular endo-
thelial growth factor receptor 2 (VEGFR2) present on the 
trophoblast cell surface [115], decorin not only interferes 
with the VEGF-dependent trophoblast invasion, but also 
with the differentiation into endovascular trophoblast, 
which is crucial for a proper uterine artery remodeling, 
as illustrated below [116]. Finally, decorin plays a regula-
tory role in trophoblast invasion by modulating the activ-
ity of MMPs involved in ECM remodeling [117, 118].

Trophoblast invasion: on the ECM road
While EVT massively invades the decidua, a remodeling 
of the uterine spiral arteries occurs in order to assure the 
establishment of an optimal blood flow from the mater-
nal to the fetal compartment [119]. This process is pos-
sible thanks to the turnover of vascular basal membrane, 
made by collagen IV, laminins and FN, in a process medi-
ated by the activation of uterine NK cells (uNK) and 
decidual macrophages [120, 121].

uNKs, abundantly present in the decidua surrounding 
spiral arteries, importantly contribute to vascular adap-
tation by inducing the separation of vascular smooth 
muscle cells and the degradation of the vascular ECM 
via the secretion of MMPs, Ang1, Ang2, VEGF-C, and 
IFNγ [122]. The recruitment and proliferation of uNK 
are mainly triggered by stimuli derived from EVT, but 
are also affected by ECM molecules, among which ver-
sican, a large chondroitin sulfate proteoglycan. Versican 
exerts multiple functions in various pregnancy-related 
processes [123, 124]. It is known to interact with other 
ECM components, mainly hyaluronan, playing an impor-
tant role in the formation of the provisional matrix 
[125], that in the early phases of pregnancy may favour 
the structural remodeling of maternal tissues neces-
sary for the development of the fetus. Five versican iso-
forms have been described in mammals: V0, V1, V2, V3 
and V4. In the endometrium, V0, V1, and V3 isoforms 
are expressed under the control of progesterone, among 

other hormones, thus changing along with the menstrual 
cycle and pregnancy [126], with increasing levels during 
the secretory phase in preparation for embryo implanta-
tion [127, 128]. During the window of implantation, the 
deposition of isoforms V1 and V0 strongly increases in 
endometrial tissue [129], and acts by promoting tropho-
blast proliferation and differentiation [124]. These higher 
levels of versican are also functional to promote uNK cell 
proliferation and to facilitate remodeling and dilation of 
spiral arteries [124]. Despite the molecular mechanisms 
have not been uncovered yet, the relevance of versican 
in vascular adaptation is emphasized by the observation 
that, in mouse models, its deletion leads to the forma-
tion of arteries characterized by a thick vessel wall and 
a narrow lumen, overall resulting in the occurrence of 
maternal hypertension and fetal growth restriction (FGR) 
[124].

Simultaneously with arterial vessel remodeling, a spe-
cialized type of trophoblast, called endovascular tro-
phoblast, differentiates and migrates upstream along the 
arterial wall, replacing the endothelium and contributing 
to the disruption of the muscular lining of the arteries. 
In this context, Lan et al. demonstrated that FN expres-
sion, further induced by the secretion of trophoblast-
derived Activin A, promotes trophoblast migration and 
the acquisition of the endothelial-like phenotype [130]. 
Accordingly, the depletion of FN in in vivo models results 
in an attenuated endovascular trophoblast migration and 
a halted decidual vascularization, overall interfering with 
early embryo implantation [130].

During invasion, endovascular trophoblast penetrates 
the maternal spiral arteries and forms temporary “plugs” 
in the lumen of the vessels, decreases the flow of mater-
nal blood, thus establishing an oxygen gradient between 
the mother and fetus, essential for differentiation, 
growth, and development of the placenta [131].

Placentation: how to draw a forest with the matrix
Once the embryo implants completely into the uterus, 
the proliferation and differentiation of trophoblasts pro-
vide the basis for the process of placentation [132], in 
which the ECM plays multifaceted roles (Fig. 5). Tropho-
blasts that face directly the maternal tissue differentiate 
and fuse to form the syncytiotrophoblast, that will rep-
resent the interface between mother and fetus for nutri-
ent transport and gas exchange, whereas those remaining 
behind, that act as a rapidly dividing stem cell pool, do 
not fuse and are denominated cytotrophoblasts. In this 
phase, a particular role can be attributed to the expres-
sion of specific isoforms of versican. The secretion of V0 
and V1 isoforms is specifically induced in syncytiotro-
phoblasts, whereas they are scarcely expressed by cyto-
trophoblasts, and the presence of this molecule in the 
environment is necessary for a proper syncytialization, 
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Fig. 5  In the beginning of placentation, the differentiation of syncitiotrophoblast occurs and precedes the formation of the villous tree. In the illustration 
the ECM molecules relevant in this phase are indicated. Created with Biorender
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thus acting as an autocrine factor [123]. Indeed, in vitro 
studies have assessed that versican silencing in BeWo 
cells, a trophoblast cell model, induces cell death and a 
defective syncytial fusion, and also relates with a lower 
production of human chorionic gonadotropin (hCG). 
Following this evidence, a lower versican deposition has 
been associated with pregnancy complications like gesta-
tional trophoblastic diseases (GTD) [123, 133].

Upon the formation of syncytiotrophoblast, fluid-filled 
spaces coalesce and rearrange into lacunae within the 
syncytium [132]. While invasion evolves, columns of the 
syncytiotrophoblast masses establish a network around 
the lacunae to form trabeculae, very important for the 
remaining development of the villous tree. The forma-
tion of syncytiotrophoblast columns is functional for a 
proper anchorage of the placenta in the uterus. This tight 
anchorage is mainly mediated by the deposition of fetal 
fibronectin (FFN) [134]. FFN is concentrated in the area 
between decidua and trophoblasts and acts as a ‘glue’ 
between fetal and maternal tissues. As pregnancy pro-
gresses, the distribution of fibronectin changes: it is heav-
ily present in the endothelial cells of fetal blood vessels, 
lightly present in the stromal fibroblasts, and no longer 
expressed in the basement membrane of the trophoblast 
[47]. Normally very low levels of FFN can be found in 
secretions of the vagina and cervix. Raised levels of FFN 
after 22 weeks of gestation, likely due to the disruption 
of the fetal-maternal interface and release of fetal matrix 
molecules, are a recognised marker to identify women 
who are at a high risk of preterm birth [135, 136]. Various 
studies have investigated FFN utility as a potential plasma 
biomarker also for PE, even if its accuracy and validity 
as a predictor of this disease still remain debatable. On 
the contrary, it has been demonstrated that the amount 
of FN loaded in the placenta-derived small extra-cellular 
vesicles (sEVs) extruded into the maternal circulation is 
markedly elevated in preeclamptic placenta and it could 
serve as an early molecular signature for the detection of 
the disease onset [137, 138].

As the trophoblast shell gradually begins to break open, 
maternal blood is permitted to enter the placental lacu-
nae originating the early uteroplacental circulation, and 
the placenta villous starts to develop [139]. Mesenchymal 
villi are the most primitive type of villi, they have a loose 
stroma, and fetal capillaries are poorly developed. Origi-
nating from mesenchymal villi, villous sprouts form and 
transform into immature and mature intermediate villi 
and terminal villi, grape-like structures characterized by 
a high degree of capillarization and highly dilated sinu-
soids. Terminal villi represent the functional unit of the 
placenta, and their structure grants the optimal environ-
ment for efficient diffusive exchange between the mother 
and fetus. Along with villous formation, the fetal vascular 
system differentiates into villous capillaries [139].

The placental villous microenvironment surround-
ing fetal capillaries is composed primarily of fibroblasts, 
myofibroblasts, macrophages (Hofbauer cells), and ECM. 
The majority of villous stroma is synthesized and depos-
ited by villous fibroblasts, and is crucial to provide physi-
cal and bio-chemical support to the evolving tree [132].

The structural villous scaffold is primarily provided by 
collagen I. Along the villous tree, an uninterrupted struc-
ture of collagen I fibres has been observed [140]. Nota-
bly, these fibres are organised differently according to the 
various levels of villous branching. The collagen of stem 
villi, emerging from the chorionic plate, forms numer-
ous fibres: the external ones, facing the villous surface, 
are mainly arranged longitudinally, while the ones in the 
central core dispose concentrically around the wall of the 
fetal vessels. The extent of collagen deposition decreases 
in the free terminal villi, which show a scarce amount of 
collagen arranged in thin concentric layers within the 
villous core, surrounding numerous dilated capillary 
and sinusoid spaces [140]. This collagen I distribution is 
meant to ensure the most favourable microenvironment 
for feto-maternal exchanges while providing support to 
the villous tree.

The formation of the placental villous tree is accom-
panied by a marked presence of HA, detectable in the 
stroma of mesenchymal and immature intermediate villi 
[141]. These significant amounts of HA are needed to 
serve as a substrate for mesenchymal cell migration and 
for the sprouting of blood vessels. Being an important 
component of the endothelial glycocalyx, a vasoprotec-
tive barrier between the blood and endothelium, HA also 
plays a key role in determining the vascular homeostasis 
within the placental villi [141]. Considering this evidence, 
we can envision that an altered deposition of HA might 
occur during PE pathogenesis, even if this aspect still 
remains poorly studied and debated [142, 143].

In addition to HA, other molecules known to influence 
vascularization and vessel homeostasis are present in the 
stroma of the villi, as collagen IV, decorin and biglycan 
[24, 144, 145]. The latter, in particular, localises within 
endothelial cells and subendothelial cells of the perivas-
cular region of fetal capillaries [24], however its function 
in this site is still unknown. Provided that biglycan regu-
lates angiogenesis and vascular development in cancer 
[146], its role in the process of placentation might be rel-
evant and deserves to be better delineated. In line with 
this vision, a low biglycan expression has been observed 
in the placenta of pregnancies with FGR, and it has been 
hypothesized that a low biglycan deposition may contrib-
ute to this condition by promoting thrombosis or vascu-
lar structural alterations [147].

A peculiar role in placentation and fetal vessel sprout-
ing may be attributed to Heparan Sulfate Proteoglycans 
(HSPGs) or syndecans, transmembrane proteins involved 
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in intercellular signaling, tissue morphogenesis, and cell 
adhesion [148].

Syndecans
The syndecan (SDC) family consists of four members: 
SDC-1 (CD138), SDC-2 (fibroglycan), SDC-3 (N-syn-
decan), and SDC-4 (amphiglycan) [149, 150]. They are 
mostly expressed on the surface of epithelial cells and 
exhibit a distinct and tightly controlled expression pat-
tern. In reference to the human placenta, only SDC1, 
SDC2, and SDC4 are detectable. In particular, SDC1 and 
SDC2 are predominantly expressed by syncytiotropho-
blasts, and in all trophoblast and mesenchymal lineages, 
respectively, while SDC4 is detectable in extravillous tro-
phoblast and villous cytotrophoblasts during early preg-
nancy [151].

Although most of the data in the literature indicate 
that syndecans play an important role in placentation, 
they are also known to affect earlier events. Indeed, dur-
ing decidualization, SDC1 functions as a co-receptor 
for osteoprotegerin, a cytokine receptor of the tumour 
necrosis factor receptor superfamily, and this interac-
tion promotes endometrial stromal decidualization [152]. 
At the same time, SDC1 serves as a storage molecule 
for many chemokines, such as CXCL1 and CXCL8, and 
angiogenic factors, as HGF and IL-8, which are essential 
for a successful implantation [153, 154]. Interestingly, 
the loss of SDC1 expression in endometrial stromal cells 
has been shown to reduce their sensitivity to the apop-
totic cell death driven by embryonic stimuli, a necessary 
mechanism for successfully establishing a pregnancy 
[155]. In later phases, during the invasion process, SDC1 
promotes EVT migration into the maternal decidua by 
interacting with the metalloproteinase ADAM12 [87].

In the placenta, SDC1 is found on the extracellular 
luminal surface of epithelial cells and syncytiotropho-
blasts as a major component of the glycocalyx [156]. 
SDC1 is important in preserving the structural integrity 
of the placental barrier and may protect the syncytiotro-
phoblast from oxidative stress and inflammation, crucial 
for a healthy pregnancy [87]. In agreement, a reduced 
expression of SDC1 on the syncytiotrophoblast of pla-
cental villi has been observed in gestational diseases, as 
PE [157]. A soluble form of SDC1, which is shed from 
the cell surface, can further influence the placenta and 
the systemic maternal health during pregnancy by acting 
as an autocrine or paracrine signaling mediator and as a 
competitor of transmembrane SDC1 [87, 157]. Moreover, 
since the enzymatic digestion of glycocalyx components 
has been shown to reveal endothelial adhesion mol-
ecules and facilitate leukocyte-endothelial interactions 
[158], we can assume that SDC1 shedding might also 
impact immune cell trafficking within the placenta. The 
soluble form of SDC1 is normally present in the serum of 

pregnant women, but its levels are lower in the case of PE 
and fetal growth restriction [157, 159]. It is interesting to 
note that the decreased SDC1 concentration is observed 
before the clinical onset of PE, suggesting a role for gly-
cocalyx disturbance in the pathophysiology of the disease 
[157].

During syncytialization, whereby cytotrophoblasts 
fuse to form the syncytiotrophoblast, syndecans medi-
ate cell-cell and cell-extracellular matrix interactions and 
cell signaling. This is achieved mainly through the direct 
binding with growth factors, as HGF, VEGF-A and FGF, 
or by functioning as co-receptors [160, 161]. A notable 
example is the interaction of syndecans with pregnancy-
specific β1 glycoprotein (PSG1), secreted by the syncytio-
trophoblast which has been shown to induce endothelial 
tube formation through binding to glycosaminoglycan 
chains on cell surface proteoglycans [162]. The binding 
of PSG1 to syndecans on endothelial cells in the pla-
centa, together with the ability of PSG1 to induce TGF-β1 
and VEGF-A by immune cells and trophoblasts, further 
mediates the proangiogenic activity of these proteins 
[162].

Syndecans can also act as independent receptors. Spe-
cifically, CXCL4, a small protein released from activated 
platelets, binds to syndecans through their glycosamino-
glycans chains within the endothelial glycocalyx, increas-
ing vascular permeability and facilitating leukocyte 
recruitment and adhesion to the vascular endothelium 
[163]. Since CXCL4 has been found in placental villi, 
likely deriving from maternal platelets adhering to the 
villous surface [164], we can assume that the interaction 
between CXCL4 and syndecans might play a similar role 
also in placentation.

Conclusions and opportunities
There is mounting evidence that, during the tissue 
remodeling evoked along with decidualization, embryo 
implantation and placentation, the ECM undergoes mas-
sive modifications in both its structural and biochemical 
features. These changes are functional for the establish-
ment of a receptive endometrium and efficient tropho-
blast invasion, key for a physiological pregnancy to occur. 
Indeed, several ECM components have been shown to 
play a role in the modulation of blastocyst adhesion and 
EVT migration.

A proficient remodeling of the ECM is so essential 
in this context that its alteration is associated with the 
occurrence of gynaecological and pregnancy diseases, 
as adenomyosis, preeclampsia and placenta accreta [11, 
12, 165]. Preeclampsia is a frequent gestational disorder 
that often leads to fetal growth restriction and whose 
pathogenesis relies on a shallow trophoblast invasion and 
an incomplete remodeling of the spiral arteries [12]. As 
highlighted in this review, in preeclamptic pregnancies 
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many ECM molecules are aberrantly expressed, among 
them collagens, FN, laminins and proteoglycans. It is 
conceivable to hypothesize that their dysregulation is not 
a mere consequence of the altered processes of embryo 
implantation, but that it might concur with the patho-
genesis of the disease, even if more work is needed to 
fully understand the mechanisms behind.

In this regard, studies performed in other contexts may 
lend a hand and be a source of new hypotheses. The cel-
lular and molecular processes influenced by ECM com-
ponents have been deeply investigated in cancer, in which 
a high relevance has been attributed to tumor-specific 
stromal remodeling. Provided that invasion processes 
related to tumor growth and embryo implantation share 
many common features, it is conceivable to hypoth-
esize that the function identified for a specific molecule 
in cancer deserves to be investigated in pregnancy. For 
instance, much evidence pinpoint decorin and perlecan 
as major regulators of tumor angiogenesis [166–171], 
however their contribution to the process of decidual 
vascular adaptation and placental vascularization is still 
poorly described. In addition, there are many ECM mol-
ecules that play an important role in tumors about which 
little or nothing is known in the context of pregnancy [3, 
6]. This is the case of tenascin-C, a key modulator of vas-
cular and immune cells in cancer, whose role in mediat-
ing the crosstalk between macrophages and endothelial 
cells has recently been described [172]. Despite the rel-
evance of these two cell types in pregnancy, tenascin-C 
remains poorly investigated in pregnancy, even if it has 
been found altered in preeclampsia and in high-risk preg-
nant women [173, 174].

Other key ECM components still unexplored in preg-
nancy are EMILINs, a family of glycoproteins exerting 
multiple functions in physiological and pathological con-
ditions. It is known that EMILIN1 is produced by decid-
ual stromal and smooth muscle uterine cells, and forms 
a gradient of increasing concentration in the perivascu-
lar region of modified vessels, likely guiding trophoblasts 
invasion [175]. Being important for lymphatic vessel 
functionality [176, 177], we can envision that EMILIN1 
should be further investigated in the process of lymphatic 
mimicry, defined as the expression of lymphatic markers 
by spiral artery endothelial cells, which is known to play 
a physiological role during spiral artery remodeling and 
is necessary for efficient placentation [178]. Since EMI-
LIN1 has been shown to form macromolecular struc-
tures together with EMILIN2 [179], an important protein 
exerting angiogenic and immunomodulatory functions 
in tumors [5, 180–182], we believe that a comprehensive 
analysis of these two molecules would provide further 
insights on several early pregnancy processes.

A better understanding of the mechanisms driven by 
ECM molecules would also be crucial considering that 

stromal remodeling represents a world to be explored for 
the identification of novel molecular markers for infertil-
ity and pregnancy diseases. Indeed, several proteolytic 
enzymes targeting ECM components and their inhibi-
tors are nowadays emerging as serologic markers of pre-
eclampsia [183–185] and we believe that, in this regard, 
also the serum levels of ECM-derived fragments in the 
peripheral blood should be considered as valuable mark-
ers for endometrial and placental stromal alterations [4].

Additionally, it may be speculated that, in the future, 
ECM remodeling may be investigated as a therapeu-
tic target for infertility and pregnancy disorders. In this 
view, few but promising breakthroughs have been made. 
Among them, the administration of collagenase-1 has 
provided consistent and significant evidence of effi-
cacy in the promotion of endometrial ECM remodeling 
by degrading collagens and proteoglycans and releasing 
matrix-bound bioactive factors, leading to an efficient 
enhancement of uterine receptivity and embryo implan-
tation in pre-clinical mouse models [186]. Overall, we 
highly emphasize the dire need for a better understanding 
of the functions of the ECM components at the maternal-
fetal interface in the progression of healthy pregnancies 
as a pressing issue to guide efforts to improve the man-
agement of obstetric diseases.
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