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Abstract 

Background  Blastocyst morphology has been demonstrated to be associated with ploidy status. Existing artificial 
intelligence models use manual grading or 2D images as the input for euploidy prediction, which suffer from sub-
jectivity from observers and information loss due to incomplete features from 2D images. Here we aim to pre-
dict euploidy in human blastocysts using quantitative morphological parameters obtained by 3D morphology 
measurement.

Methods  Multi-view images of 226 blastocysts on Day 6 were captured by manually rotating blastocysts dur-
ing the preparation stage of trophectoderm biopsy. Quantitative morphological parameters were obtained by 3D 
morphology measurement. Six machine learning models were trained using 3D morphological parameters 
as the input and PGT-A results as the ground truth outcome. Model performance, including sensitivity, specific-
ity, precision, accuracy and AUC, was evaluated on an additional test dataset. Model interpretation was conducted 
on the best-performing model.

Results  All the 3D morphological parameters were significantly different between euploid and non-euploid 
blastocysts. Multivariate analysis revealed that three of the five parameters including trophectoderm cell number, 
trophectoderm cell size variance and inner cell mass area maintained statistical significance (P < 0.001, aOR = 1.054, 
95% CI 1.034–1.073; P = 0.003, aOR = 0.994, 95% CI 0.991–0.998; P = 0.010, aOR = 1.003, 95% CI 1.001–1.006). The 
accuracy of euploidy prediction by the six machine learning models ranged from 80 to 95.6%, and the AUCs ranged 
from 0.881 to 0.984. Particularly, the decision tree model achieved the highest accuracy of 95.6% (95% CI 84.9-99.5%) 
with the AUC of 0.978 (95% CI 0.882–0.999), and the extreme gradient boosting model achieved the highest AUC 
of 0.984 (95% CI 0.892-1.000) with the accuracy of 93.3% (95% CI 81.7-98.6%). No significant difference was found 
between different age groups using either decision tree or extreme gradient boosting to predict euploid blastocysts. 

†Guanqiao Shan and Khaled Abdalla contributed equally to this work.

*Correspondence:
Zhuoran Zhang
zhangzhuoran@cuhk.edu.cn
Clifford Librach
drlibrach@createivf.com
Yu Sun
yu.sun@utoronto.ca
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12958-024-01302-x&domain=pdf


Page 2 of 12Shan et al. Reproductive Biology and Endocrinology          (2024) 22:132 

The quantitative criteria extracted from the decision tree imply that euploid blastocysts have a higher number of tro-
phectoderm cells, larger inner cell mass area, and smaller trophectoderm cell size variance compared to non-euploid 
blastocysts.

Conclusions  Using quantitative morphological parameters obtained by 3D morphology measurement, the decision 
tree-based machine learning model achieved an accuracy of 95.6% and AUC of 0.978 for predicting euploidy in Day 6 
human blastocysts.

Trial registration  N/A.

Keywords  Blastocyst, Euploidy prediction, 3D morphology measurement, Machine learning

Background
 During in vitro fertilization (IVF), embryo evaluation is 
a critical step to select embryos with high reproductive 
potential for transfer. Embryo aneuploidy is one of the 
leading causes of implantation failure [1, 2] and miscar-
riages [3, 4]. Preimplantation genetic testing for aneu-
ploidy (PGT-A) is widely employed to determine embryo 
ploidy status. Due to the invasive nature of the biopsy 
procedure and the financial burden for genetic testing, 
whether PGT-A should be routinely used in IVF treat-
ment is still under debate [5, 6]. Blastocoel fluid sampling 
(BFS) and spent blastocyst media (SBM) testing were 
developed with the aim of reducing or eliminating the 
invasiveness caused by biopsy. The origins of the genetic 
materials tested by these methods remain unknown. In 
addition, these techniques lack diagnostic consistency 
with the reported genetic testing accuracy ranging from 
30.4 to 97.8% [7, 8].

Morphological evaluation, a non-invasive method for 
blastocyst selection, is universally used in IVF clinics. 
Embryologists manually grade each blastocyst by visu-
ally observing its morphological characteristics [9, 10], 
including the degree of expansion and hatching status (1: 
less than half expansion, up to 6: fully hatched), cohesive-
ness and number of trophectoderm (TE) cells (A-C, from 
highest to lowest), and size and compactness of the inner 
cell mass (ICM; A-C, from highest to lowest). It has been 
reported that blastocysts with a lower grade in either TE 
cells or ICM have a lower euploidy rate [11–13]. Due to 
the qualitative grading criteria and inherent subjectivity, 
manual grading suffers from large intra/inter-observer 
variability [14, 15]. Morphokinetic features have also 
been used to evaluate embryo development patterns for 
embryo selection. Several morphokinetic parameters 
such as time to two cell stage (t2) [16] and time to full 
blastocyst (tB) [17, 18] showed significant delays in ane-
uploid embryos compared to euploid embryos. However, 
the ability of morphokinetic models to predict euploidy 
remains controversial, and significant disparities exist in 
the selection of morphokinetic events [19, 20].

Artificial intelligence (AI) has gained traction for non-
invasive prediction of embryo ploidy status over the past 

five years. Various machine learning models that used 
different features as input have been investigated [21]. 
Manual morphological grading and morphokinetic anno-
tation were most often used as the model input, where 
the euploidy prediction accuracy ranged from 64 to 72% 
and the area under the receiver operating characteristic 
curve (AUC) ranged from 0.67 to 0.75 [22–27]. Among 
these models, logistic regression and random forest 
achieved an AUC higher than 0.7 [23, 26, 27].

Instead of relying on manual grading and annotation, 
deep learning performs euploidy prediction by directly 
using images or time-lapse videos without involving 
manual evaluation. Image-based deep learning models 
achieved a euploidy accuracy of 69.3–77.4% and an AUC 
of 0.65 to 0.87 [28–31]. An ensemble model including 
DenseNet-161, ResNet-50 and DenseNet-121 sub-mod-
els achieved the highest AUC of 0.87 after data cleans-
ing [29]. Video-based deep learning models achieved a 
euploidy accuracy of 71.4–73% and an AUC of 0.74 to 
0.811 [32–36], where visual-temporal contrastive learn-
ing achieved the highest AUC of 0.811 [36].

Although these deep learning models eliminated 
human subjectivity and demonstrated improved per-
formance of euploidy prediction, it is challenging to 
open the so-called ‘black box’ and understand the clini-
cal aspects underlying these complex neural networks. 
The limited interpretability raises epistemic and ethical 
concerns, impeding the application of these models in 
clinical IVF [21, 37]. In addition, existing methods were 
all based on 2D images or videos (i.e., a single 2D image, 
2D images from different focal planes, or a series of 2D 
images from time-lapse videos), which only included par-
tial TE and ICM information. For the same blastocyst, 
evaluation results can vary with different blastocyst ori-
entations [38].

This study aims to develop a new approach for non-
invasive euploidy prediction in human blastocysts. In 
our approach, the morphological parameters of TE cells 
and ICM are first quantified via 3D morphology meas-
urement and then used as the input of the prediction 
model. The prediction performance of six machine learn-
ing models was compared, and via model interpretation, 
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quantitative criteria were generated for euploidy predic-
tion with a prediction accuracy of 95.6%.

Methods
Study design and participants
This retrospective cohort study was performed at the 
CReATe Fertility Centre in Toronto, Canada from Feb-
ruary 2022 to May 2023. Data were obtained from 226 
unhatched blastocysts from 55 patients. Multi-view 
images of each blastocyst were collected on Day 6 (136–
142 h after insemination). PGT-A results were used as 
the ground truth outcome. The study was non-inter-
ventional, and results were not used to make treatment 
decisions. The data analysis was conducted following the 
research protocol approved by Veritas independent insti-
tutional review board (#2022-2602-9773-1). Informed 
consent was not necessary for participation in this study 
since all data were retrospectively collected and fully de-
identified with no intervention in embryo fate or patient 
care.

Image capture
Multi-view images were captured by rotating the blas-
tocyst during the preparation stage of TE biopsy. An 
embryologist held the blastocyst using a holding micropi-
pette. The focal plane was first placed in the middle plane 
of the blastocyst to capture the first image. This step is 
only conducted once for each blastocyst. The focal plane 
was then moved downwards until individual TE cells and 
ICM were clearly visible. This focal plane was then fixed 
for image capturing throughout subsequent blastocyst 
rotations. A biopsy micropipette was used to gently push 
the blastocyst and rotate the blastocyst each time by a 
small angle, for instance, smaller than 35° such that more 
than 10 images were captured for the entire 360° rota-
tion to achieve high-accuracy measurement. The rota-
tion angle did not need to be precisely controlled as long 
as there was an overlap between two adjacent images. 
An image of the blastocyst was captured at each rota-
tion. Alternatively, to avoid interruption by frequently 
capturing images, the entire rotation process was video 
recoded, and multi-view images of each blastocyst were 
exacted from the video afterwards. Supplementary Video 
1 shows details of the blastocyst rotation process.

3D morphology measurement
To quantify the morphology of a blastocyst three-dimen-
sionally, the center O and diameter D of the blastocyst 
were measured from the image captured in the middle 
plane of the blastocyst and used to construct a spheri-
cal surface Ω. As shown in Fig. 1A, all multi-view images 
of the blastocyst were then cropped into D×D centered 
at O. Spherical rotation SIFT (SR-SIFT) algorithm was 

performed among multi-view images to calculate their 
transformation matrices [38], based on which multi-
view images were projected on the spherical surface Ω 
to form the 3D surface model of the blastocyst. After 
3D modeling, the TE cells and ICM of the blastocyst 
were segmented using U-Net, and their morphological 
parameters were measured from the segmented 3D sur-
face model. The measurement error of the morphological 
parameters was less than 6.7%. More technical details can 
be found in our previous work [38] and Supplementary 
Video 2.

According to the current morphological grading sys-
tem [9, 10], the morphological parameters quantified in 
this study were blastocyst diameter, TE cell number, TE 
cell density, TE cell size variance, and ICM area. Blasto-
cyst diameter was used to quantify the blastocyst size. 
TE cell number, density and size variance were used to 
quantify TE cell morphological properties, where TE cell 
density was defined as TE cell number per 1,000 µm2 and 
TE cell size variance is defined as the standard deviation 
of the areas of all TE cells within a blastocyst. ICM area 
was used to denote ICM size.

TE biopsy and PGT‑A
TE biopsy was performed immediately after blastocyst 
rotation. Laser pulses were used to separate 4–5 TE cells 
from the blastocyst. Biopsied samples were amplified and 
analyzed by next-generation sequencing (NGS, Illumina) 
at the CReATe Fertility Centre. Blastocysts were classi-
fied as euploid, mosaic, and aneuploid that corresponded 
to < 20%, 20–80%, and > 80% aneuploidy, respectively.

Machine learning models
All five parameters determined by 3D morphology meas-
urement were used as the input of the machine learning 
models for euploidy prediction. The model output con-
tains two categories: euploid and non-euploid (including 
mosaic and aneuploid). Figure 1B shows the development 
process of the prediction system. The prediction perfor-
mance of six machine learning models, including logis-
tic regression (LR), decision tree (DT), extreme gradient 
boosting (XGBoost), random forest (RF), support vector 
machine (SVM), and multilayer perceptron (MLP) com-
monly used in clinical studies were investigated.

The dataset was divided into 80% for training and vali-
dation, and 20% for test. The test dataset was not acces-
sible to the machine learning models in the training and 
validation process. All hyperparameters of the machine 
learning models were tuned by k-fold cross-validation 
[39], and all models were trained to maximize their 
AUCs. For each model, the threshold corresponding to 
the point on the receiver operating characteristic (ROC) 
curve closest to the top-left point (0,1) was selected to 



Page 4 of 12Shan et al. Reproductive Biology and Endocrinology          (2024) 22:132 

maximize the sum of the model’s sensitivity and specific-
ity [40]. Details for machine learning models are provided 
in Supplementary Table 1, and source codes are available 
at https://​github.​com/​AMNL-​UofT/​euplo​idy-​predi​ction.

Statistical analysis
Statistical analysis was performed using IBM SPSS Statis-
tics 26 and scikit-learn version 1.2.2 in Google Colabo-
ratory. Categorical variables were described by number 
and percentage, and numerical variables were described 
by mean, standard deviation (SD) and range. The Chi-
squared test was performed to analyze trends in categori-
cal variables, and the t-test was performed to compare 
numerical variables among different groups. Pearson 
correlation was used to analyze the linear relationship 
among numerical variables. All statistical tests were two-
tailed. P values of < 0.05 were considered statistically 
significant, and odd ratios (ORs) with 95% confidence 
interval (CI) were calculated. Forward stepwise logistic 
regression was used for multivariate analysis to calculate 
the adjusted odd ratios (aORs).

The performance of the machine learning models for 
euploidy prediction on the test dataset was evaluated by 
AUC, accuracy, precision, sensitivity, and specificity with 

95% confidence interval. ROC curves among machine 
learning models were compared using DeLong’s test, 
and accuracy was compared by McNemar test. Feature 
importance was calculated to evaluate the predictive 
power of each feature on euploidy prediction. Details 
regarding evaluation metrics and feature importance are 
provided in Supplementary Table 1.

Results
Dataset
A total of 226 Day 6 blastocysts from 55 patients were 
used to train, validate, and test the machine learning 
models. The maternal age of the patients ranged from 
21 to 44 years (34.4 ± 5.2 years). According to the PGT-A 
results, 57.1% (129/226) of the blastocysts were euploid, 
and 42.9% (97/226) were non-euploid, including mosaic 
(12.4%, 28/226) and aneuploid (30.5%, 69/226). The 
characteristics of the dataset are given in Supplemen-
tary Table 2. Supplementary Table 3 shows the euploidy 
rate of blastocysts assigned with different morphologi-
cal grades. Overall, the euploidy rate decreased as the 
grades decreased from AA to CC in different mater-
nal age groups. For blastocysts with grades ≥ BB, the 

Fig. 1  Schematic of non-invasive euploidy prediction in human blastocysts: A 3D morphology measurement. Multi-view images were captured 
during blastocyst rotation. A 3D blastocyst model was then built by projecting multi-view images to the spherical surface via transformation 
matrices calculated by SR-SIFT. Using U-Net, TE cells and ICM on the 3D surface model were segmented and 3D morphological parameters were 
measured. B Overview of the machine learning model development for euploidy prediction. In training, the input was the five morphological 
parameters quantified via 3D morphology measurement, and the output was the PGT-A results as the ground truth outcome. All six machine 
learning models were trained using the same training dataset. An additional test dataset was used to evaluate the performance of the models. 
Interpretation was conducted on the best-performing model where quantitative rules were generated for euploidy prediction

https://github.com/AMNL-UofT/euploidy-prediction
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euploidy rate decreased from 77.3 to 44.8% as maternal 
age increased.

The morphological parameters of all 226 blastocysts 
were successfully quantified via 3D morphology meas-
urement. The pixel-to-micron scale of the parameters 
was calibrated by a standard calibration slide. Outliers 
were revisited by manually measuring the morphologi-
cal parameters from the 3D surface model, and the out-
lier was corrected if its measurement error was larger 
than 8%. After preprocessing, the morphological param-
eters were then used as the input of the machine learning 
models for euploidy prediction. Among the 226 blasto-
cysts, 181 were used for training and validation, and 45 
were used for test. In the test dataset, 57.8% of the blasto-
cysts were euploid and 42.2% non-euploid. All six models 
were tested under the same test dataset which was not 
used during model training and validation. The dataset 
of the morphological parameters and the corresponding 
PGT-A results is provided in Supplementary Table 5.

Univariate analysis
Univariate analysis demonstrated that all five morpho-
logical parameters were significantly different between 
the euploid and non-euploid blastocysts (Table  1). The 
euploid blastocysts showed significantly larger diameters 
and ICM area, higher TE cell number and density, and 
lower TE cell size variance.

The blastocysts were further divided into three mater-
nal age groups: ≤34 years in group A, 35–37 years in 
group B, and ≥ 38 years in group C. The blastocysts in 
group A showed a significantly smaller TE cell size vari-
ance than those in group B (386.4 µm2 vs. 582.7 µm2, 
P = 0.042). They also showed a higher TE cell number and 
density (117.1 vs. 95.9, P = 0.011; 1.1 cells/1000 µm2 vs. 
1.0 cell/1000 µm2, P = 0.013), a smaller TE cell size vari-
ance (386.4 µm2 vs. 572.4 µm2, P = 0.033), and a higher 
euploidy rate (66.2% vs. 37.5%, P = 0.001) than the blas-
tocysts in group C. However, among the euploid blas-
tocysts, no statistically significant difference was found 
for any of the five morphological parameters among 

the three age groups. The same phenomenon was also 
observed among the non-euploid blastocysts. Table  2 
shows the detailed distribution of the morphological 
parameters in the different age groups.

Multivariate analysis
Multivariate analysis revealed that TE cell number, TE 
cell size variance and ICM area maintained statistical 
significance between the euploid and the non-euploid 
blastocysts (P < 0.001, aOR = 1.050, 95% CI 1.032–1.068; 
P = 0.002, aOR = 0.994, 95% CI 0.991–0.998; P = 0.005, 
aOR = 1.004, 95% CI 1.001–1.006), as shown in Table 1. 
Blastocyst diameter and TE cell density were not sig-
nificant parameters associated with the ploidy sta-
tus (P = 0.934; P = 0.837) compared to the other three 
parameters.

Feature importance was analyzed in all six machine 
learning models. TE cell number showed the highest 
importance in all models, followed by TE cell size vari-
ance and ICM area in LR, DT, SVM and MLP. ICM area 
was replaced by TE cell density in XGBoost and RF in the 
top-three ranked features. Feature rankings are summa-
rized in Supplementary Fig. 1.

Euploidy prediction results
With the five morphological parameters as input, 
the accuracy of euploidy prediction by the six mod-
els ranged from 80 to 95.6%, and the AUCs ranged 
from 0.881 to 0.984 (Fig.  2). The best-performing mod-
els for euploidy prediction were tree-based models, i.e., 
DT and XGBoost. DT achieved the highest accuracy of 
95.6% (95% CI 84.9-99.5%) with the AUC of 0.978 (95% 
CI 0.882–0.999). The sensitivity, specificity and precision 
of DT were 96.2% (95% CI 80.4-99.9%), 94.7% (95% CI 
74.0-99.9%), and 96.2% (95 CI 78.7-99.4%), indicating its 
strong ability to avoid either false positive or false nega-
tive results. XGBoost achieved the highest AUC of 0.984 
(95% CI 0.892-1.000) with the accuracy of 93.3% (95% CI 
81.7-98.6%). The pairwise comparison of ROC curves 
showed no significant difference between the AUCs of 

Table 1  Univariate and multivariate analysis of associations between 3D morphological parameters and ploidy status

Morphological parameters All
n = 226

Euploid
n = 129

Non-euploid
n = 97

Univariate analysis Multivariate analysis

P value OR (95% CI) P value aOR (95% CI)

Diameter (µm) (SD) 183.9 (21.6) 190.4 (19.1) 175.2 (21.9) < 0.001 1.040 (1.023–1.056) 0.945 1.000

TE cell number (SD) 110.0 (49.7) 141.3 (38.5) 68.3 (27.1) < 0.001 1.070 (1.052–1.089) < 0.001 1.054 (1.034–1.073)

TE cell density (cell number 
/1000 µm2) (SD)

1.1 (0.4) 1.3 (0.3) 0.8 (0.3) < 0.001 354.412 (80.111-1567.923 0.872 1.000

TE cell size variance (µm2) (SD) 467.6 (680.8) 221.5 (119.2) 794.9 (937.0) < 0.001 0.992 (0.989–0.994 0.003 0.994 (0.991–0.998)

ICM area (µm2) (SD) 5492.7 (2280.7) 5883.4 (2303.1) 4973.2 (2154.3) 0.004 1.002 (1.001–1.003) 0.010 1.003 (1.001–1.006)
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the DT model and the XGBoost model (P = 0.574). Per-
formance metrics of all the machine learning models are 
described in Table 3.

The test dataset was further divided into different 
maternal age groups. Post-hoc analysis was conducted 
to investigate whether differences exist in the DT and 
XGBoost models for euploidy prediction on the basis 
of age. Details of prediction accuracy and AUCs are 
summarized in Supplementary Table  4. No significant 
difference was found among the age groups of ≤ 34, 

35–37, and ≥ 38 years using either DT or XGBoost to 
predict euploid blastocysts.

Interpretation was conducted on the DT model. The 
rule used at each node of the tree was extracted from 
the model. Quantitative rules used by the DT model for 
euploidy prediction are summarized as follows: (1) if 
the TE cell number of a blastocyst on Day 6 is higher 
than 94, then the blastocyst is predicted to be euploid; 
or (2) if the TE cell size variance of the blastocyst is no 
larger than 478 µm2, and in the meantime its ICM area 

Fig. 2  ROC curves of (A) logistic regression, (B) decision tree, (C) XGBoost, (D) random forest, (E) support vector machine, and (F) multilayer 
perceptron for predicting euploid blastocysts in the test dataset

Table 3  Performance of all six machine learning models for euploidy prediction

Metrics LR DT XGBoost

Sensitivity (95% CI) 88.5% (69.9-97.6%) 96.2% (80.4-99.9%) 92.3% (74.9-99.1%)

Specificity (95% CI) 89.5% (66.9-98.7%) 94.7% (74.0-99.9%) 94.7% (74.0-99.9%)

Precision (95% CI) 92.0% (75.5-97.7%) 96.2% (78.7-99.4%) 96.0% (78.0-99.4%)

Accuracy (95% CI) 88.9% (76.0-96.3%) 95.6% (84.9-99.5%) 93.3% (81.7-98.6%)

AUC (95% CI) 0.962 (0.854–0.996) 0.978 (0.882–0.999) 0.984 (0.892-1.000)

Metrics RF SVM MLP
Sensitivity (95% CI) 92.3% (74.9-99.1%) 76.9% (56.4-91.0%) 96.2% (80.4-99.9%)

Specificity (95% CI) 94.7% (74.0-99.9%) 84.2% (60.4-96.6%) 84.2% (60.4-96.6%)

Precision (95% CI) 96.0% (78.0-99.4%) 87.0% (69.8-95.1%) 89.3% (74.6-95.9%)

Accuracy (95% CI) 93.3% (81.7-98.6%) 80.0% (65.4-90.4%) 91.1% (78.8-97.5%)

AUC (95% CI) 0.974 (0.876–0.999) 0.881 (0.749–0.958) 0.974 (0.876–0.999)
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is larger than 8007 µm2, then the blastocyst is predicted 
to be euploid.

Discussion
In this study, we conducted 3D quantitative morphologi-
cal measurement of Day 6 blastocysts, based on which, 
machine learning models were used to non-invasively 
predict the euploid blastocysts. Five morphological 
parameters of TE cells and ICM were quantified, the 
results of which were used to train six machine learning 
models commonly investigated in clinical studies. The 
results showed that the tree-based models achieved the 
highest accuracy (95.6%) and AUC (0.984). To our best 
knowledge, these are the highest accuracy and AUC val-
ues reported in the literature for euploidy prediction.

Previous studies demonstrated that blastocysts with 
grade-A TE and ICM showed a significantly higher 
euploidy rate compared to grade-B or grade-C groups 
[12, 13]. For euploidy prediction with machine learning 
models, the gradings of TE and ICM were converted into 
numerical scores as the model input. LR and XGBoost 
were reported to give an accuracy of 63.2% [30] and an 
average AUC of 0.7 [22, 27]. Since manual grading was 
used as the model input, the prediction accuracy in these 
methods was subject to observer variances. For morpho-
logical grading, it was reported that the inter-observer 
agreement was fair (kappa = 0.349 for ICM grading; 
kappa = 0.397 for TE grading) [41] and the overall intra-
observer agreement was moderate (kappa = 0.495) [42]. 
The observer variances introduce noises into the models, 
resulting in poor prediction consistency and limited pre-
diction performance.

To eliminate human subjectivity, deep learning models 
directly using blastocyst images as the input were devel-
oped for euploidy prediction. Chavez-Badiola et  al. [28] 
used a convolutional neural network (CNN) to exact fea-
tures from a static image of a blastocyst and a fully con-
nected network to generate the probability of euploidy. 
The model achieved an AUC of 0.74. Diakiw et  al. [29] 
reported an ensemble model that included three CNN-
based deep learning networks and used a majority-
mean-based voting strategy for euploidy prediction. The 
ensemble model improved the AUC to 0.87 after data 
cleansing. Although these models eliminated human sub-
jectivity, their prediction was based on 2D images that 
lack complete morphological information. Not all TE 
cells are visible in 2D images due to the spherical struc-
ture of blastocysts, and the size of the ICM appears dif-
ferent at different blastocyst orientations. Morphokinetic 
and clinical features have also been used as additional 
input to achieve an AUC up to 0.879 [27, 30, 33], which 
was a minor improvement over 0.87. A potential rea-
son for the minor improvement was that the redundant 

information contained in morphokinetic or clinical fea-
tures could have caused overfitting and thus limited the 
predictive ability of these models [21, 23, 30, 43].

In the present study, we quantified the morphological 
parameters of entire blastocysts using 3D morphology 
measurement. All five parameters showed significant 
differences between euploid and non-euploid blasto-
cysts. Using them as input, DT, XGBoost, RF and MLP 
achieved > 0.9 in both accuracy and AUC. The high 
euploidy prediction accuracy was attributed to the strong 
associations between the 3D morphological parameters 
and ploidy status of the blastocyst, as well as the elimi-
nation of noises caused by input subjectivity and infor-
mation loss. Notably, the lower bounds of 95% CI for 
the AUCs of DT and XGBoost were 0.882 and 0.892, 
higher than the AUCs of existing deep learning models 
for euploidy prediction. The higher lower bounds suggest 
that our models could maintain their outstanding perfor-
mance as the dataset is further enlarged.

The parameter distribution was further investigated 
between different age groups. It was found that although 
the parameters and the euploidy rate among all the blas-
tocysts showed significant differences in terms of the 
maternal age, the distribution difference of all five mor-
phological parameters among euploid blastocysts was 
not significant between different age groups. The same 
phenomenon was also observed among non-euploid 
blastocysts. These results suggest that euploid blastocysts 
from different age groups conform to similar morpho-
logical characteristics. It also explains why our machine 
learning models were able to achieve high accuracies 
in different age groups although maternal age was not 
included in the model input.

In all six models, TE-related parameters (TE cell num-
ber and TE cell size variance) showed higher predictive 
abilities than the ICM-related parameter (ICM area), 
which is consistent with previously reported studies 
[13, 22, 44]. Since biopsy and PGT-A are performed on 
TE cells, the testing result is not necessarily representa-
tive of the ploidy status of the ICM. It has been reported 
that the concordance of ploidy status between TE and 
ICM ranged from 85 to 95% [45–47]. This disconcord-
ance lowers the predictive power of the  ICM area on 
the PGT-A outcome. Additionally, the  TE layer shows 
distinct morphological details of individual cells due to 
the monolayer structure compared to the ICM which is 
a compact, fist-like structure with no visible details of 
individual cells. Thus, the models tended to assign higher 
weights to TE-related features since the models were able 
to acquire more information from them than from the 
ICM.

One controversial issue of machine learning mod-
els used for medical treatment is their interpretability. 
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Although current deep learning models have demon-
strated AUCs higher than 0.8 for euploidy prediction [27, 
29, 33], it is difficult to understand clinical aspects under-
lying these complex neural networks. The limited inter-
pretability raises concerns over whether the decisions 
made by a poorly understood model can be trusted for 
IVF treatment [21, 37]. In our study, we conducted model 
interpretation on the DT model which achieved the high-
est accuracy of 95.6%. The high euploidy prediction accu-
racy was attributed to the strong associations between 
the 3D morphological parameters and ploidy status of 
the blastocyst as well as the elimination of noises caused 
by input subjectivity and information loss. The quan-
titative criteria extracted from the DT model showed 
that the majority of the euploid blastocysts (120 out of 
129 euploid blastocysts) had a high number of TE cells 
(> 94). The minority of the euploid blastocysts (3 out of 
129 euploid blastocysts) had a lower number of TE cells 
(72–78) but a large ICM (> 8,007 µm2) and their TE cells 
showed a small variation in size (≤ 478 µm2).

These findings could be understood from previous 
studies in human blastocysts. Evidence suggested that 
mosaic and aneuploid human blastocysts have a signifi-
cantly lower number of TE cells and a smaller ICM size 
due to the increased apoptosis rate and reduced pro-
liferation rate [48–51]. In both TE and ICM, chromo-
somal imbalance causes significant differences in gene 
expression. The differential gene expression causes the 
disruption of the pathways involved in the regulation 
of apoptosis and proliferation [48, 50, 51]. Specifically, 
Regin et  al. [50] found that the abnormal gene expres-
sion disrupted the intracellular protein homeostasis and 
caused proteotoxic stress. Autophagy was then activated 
to mitigate the stress. Unsuccessful recovery of the pro-
tein homeostasis by autophagy further triggered the 
apoptosis process to eliminate the cell. The increased 
apoptosis rate was found to be more pronounced among 
aneuploid cells in the TE layer compared to the ICM [50, 
51], which may explain the higher predictive power of 
TE-related morphological parameters compared to the 
ICM-related parameter in our machine learning model. 
Furthermore, the proteotoxic stress can also cause DNA 
damage during DNA replication in mitosis [49, 52]. In 
human blastocysts, such DNA damage leads to cell-cycle 
arrest, and thereby delay of proliferation [50, 51]. The 
increased apoptosis and reduced proliferation collec-
tively result in a lower number of TE cells and a smaller 
ICM size in mosaic and aneuploid blastocysts than in 
euploid blastocysts.

Regarding the TE cell size variances, studies in human 
cells suggested that polyploid cells have larger cell sizes 
than euploid cells. Williams et al. [53] found that the size 
of trisomic cells in human fibroblasts was significantly 

larger than that of euploid cells, as a result of abnormal 
cellular metabolism (e.g., increased glutamine consump-
tion). Neurohr et  al. [54] also found that human fibro-
blasts with tetraploidy or greater ploidy increased in 
cell size when they entered cell-cycle arrest due to DNA 
damage during mitosis. These findings indicate that non-
euploid blastocysts containing both polyploid cells and 
euploid cells in the TE layer may possess a larger cell size 
variance than euploid blastocysts.

A few limitations exist in the present study and deserve 
further investigation. Firstly, this study did not include 
data from Day 5 embryos. All biopsies were conducted 
on Day 6 blastocysts (136–142 h after insemination) 
since a high percentage of Day 5 embryos were still at an 
early stage of blastocysts [55]. The correlation between 
3D morphological parameters and ploidy status of Day 
5 blastocysts needs further investigation. Secondly, this 
study aims to differentiate between euploid blastocysts 
and non-euploid ones. Mosaic embryos have a mixture 
of euploid and aneuploid cells. The overall incidence of 
mosaicism at the blastocyst stage ranges from 5 to 15% 
[56, 57]. Due to the low rate of mosaicism (12.4%), in this 
study, mosaic and aneuploid blastocysts were assigned to 
the same category of non-euploid. Compared to euploid 
embryos, mosaic embryos tend to have lower reproduc-
tive potential [58]. Among mosaic embryos, low-level 
and segmental mosaic embryos have a higher live birth 
rate than high-level and whole-chromosome mosaic 
embryos [59]. With a larger dataset, non-euploid would 
be further categorized into different mosaic and ane-
uploid categories as shown in Supplementary Table  2. 
Thirdly, this study was based on data collected from a 
single clinical center. One focus in our ongoing work is to 
collect a larger dataset from multiple centers, subanalyze 
the specific types of aneuploid and mosaic embryos, and 
further evaluate the performance of ploidy prediction 
from 3D morphological parameters. Furthermore, a pro-
spective blinded study is needed to evaluate the predic-
tion accuracy using this technology.

Conclusions
This retrospective study showed strong predictive abili-
ties of morphological parameters obtained by 3D mor-
phological measurement for euploidy prediction in 
human blastocysts. The proposed system eliminated 
the input subjectivity from observers and information 
loss caused by the usage of 2D images. Using the five 
3D morphological parameters, DT achieved the highest 
accuracy of 95.6% and XGBoost achieved the highest 
AUC of 0.984 among all six machine learning models. 
The prediction performance maintained among differ-
ent age groups. Model interpretation was conducted 
and quantitative criteria were extracted from the DT 
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model. Our prediction system may facilitate the com-
prehension of associations between blastocysts’ mor-
phology and their ploidy status, provide a standardized 
and non-invasive method for morphological evalua-
tion of human blastocysts, and aid decision-making for 
embryo selection in IVF treatments.
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