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Abstract 

Background  Ovarian tissue transplantation can restore fertility in young cancer survivors, however the detrimental 
loss of follicles following transplantation of cryopreserved ovarian tissue is hampering the efficiency of the proce-
dure. This study investigates whether needle puncturing prior to transplantation can enhance revascularization and 
improve follicle survival in xenotransplanted human ovarian cortex.

Methods  Cryopreserved human ovarian cortex pieces (N = 36) from 20 women aged 24–36 years were included. 
During the thawing process, each piece of tissue was cut in halves; one half serving as the untreated control and the 
other half was punctured approximately 150–200 times with a 29-gauge needle. The cortex pieces were transplanted 
subcutaneously to immunodeficient mice for 3, 6 and 10 days (N = 8 patients) and for 4 weeks (N = 12 patients). After 
3, 6 and 10 days, revascularization of the ovarian xenografts were assessed using immunohistochemical detection of 
CD31 and gene expression of angiogenic factors (Vegfα, Angptl4, Ang1, and Ang2), and apoptotic factors (BCL2 and 
BAX) were performed by qPCR. Follicle density and morphology were evaluated in ovarian xenografts after 4 weeks.

Results  A significant increase in the CD31 positive area in human ovarian xenografts was evident from day 3 to 10, 
but no significant differences were observed between the needle and control group. The gene expression of Vegfα 
was consistently higher in the needle group compared to control at all three time points, but not statistically signifi-
cant. The expression of Ang1 and Ang2 increased significantly from day 3 to day 10 in the control group (p < 0.001, 
p = 0.0023), however, in the needle group this increase was not observed from day 6 to 10 (Ang2 p = 0.027). The 
BAX/BCL2 ratio was similar in the needle and control groups. After 4-weeks xenografting, follicle density (follicles/
mm3, mean ± SEM) was higher in the needle group (5.18 ± 2.24) compared to control (2.36 ± 0.67) (p = 0.208), and 
a significant lower percentage of necrotic follicles was found in the needle group (19%) compared to control (36%) 
(p = 0.045).

Conclusions  Needle puncturing of human ovarian cortex prior to transplantation had no effect on revascularization 
of ovarian grafts after 3, 6 and 10 days xenotransplantation. However, needle puncturing did affect angiogenic genes 
and improved follicle morphology.
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Background
Cryopreservation and autotransplantation of human 
ovarian cortex tissue has gained ground worldwide as 
the only fertility preserving option for prepubertal girls 
and patients in need of immediate cancer treatment 
[1–4]. Since the first live birth in 2004 [5], the number 
of live births has now exceeded 200 and live births rates 
in women transplanted with ovarian tissue range from 
20–30% [6–11]. Following ovarian tissue transplanta-
tion (OTT) an endocrine recovery of 72–95% has been 
reported [6]. However, the patients present with consist-
ently low AMH after OTT reflecting the low number 
of surviving follicles in the ovarian grafts [1, 3, 12–16]. 
During cryopreservation and thawing less than 20% of 
the primordial follicles are lost, however, following trans-
plantation 60–80% or more of the follicles are lost during 
grafting [17–21]. This massive follicle loss observed after 
OTT is hampering the efficiency of the procedure [22–
24], and increasing the follicle survival after OTT could 
improve reproductive outcomes in transplanted women.

The massive follicle loss in the ovarian grafts is due to 
ischemia and hypoxia and the injury following reperfu-
sion early in the post-transplantation period [22–24]. 
Multiple approaches have aimed to reduce the damage 
caused by hypoxia and ischemia/ reperfusion injury in 
ovarian tissue with varying results [21, 25–27]. Stud-
ies have attempted to accelerate and increase the revas-
cularization of the ovarian graft by the use of vascular 
endothelial factor (VEGF), basic fibroblast growth factor 
(bFGF), Er:YAG laser and adipose stem cells to shorten 
the period of ischemia and to avoid reperfusion failure 
[21, 28–32]. Revascularization of the ovarian tissue is 
crucial for its survival and several studies have shown a 
correlation between improved angiogenesis and higher 
follicle survival [33, 34], which has made the revasculari-
zation process a target of possible optimization of follicle 
survival after OTT. In cardiovascular surgery, controlled 
tissue damage has been utilized to induce angiogen-
esis for decades [35]. Moreover, laser channels has been 
shown to induce angiogenesis in ischemic animal models 
[36–41]. In a porcine model tissue damage done by nee-
dle punctures was able to induce angiogenesis at the same 
level as laser treatment [42]. The aim of this study was to 
study if controlled tissue damage, through mechanical 
injury using needle puncturing, could induce angiogen-
esis in xenotransplanted human ovarian tissue and subse-
quently improve follicle survival and morphology.

Materials and Methods
Human ovarian tissue
Donated ovarian cortex tissue from 20 women aged 
24–36  years (mean ± SD; 30.6 ± 3.7) was included in 
this study. The ovarian cortex tissue was cryopreserved 

for fertility preservation using slow-freezing as previ-
ously described [20], at the Laboratory of Reproduc-
tive Biology, Copenhagen University Hospital, Denmark 
between 2001–2011. Indications for fertility preservation 
for these women were breast cancer (N = 10), Hodgkin’s 
lymphoma (N = 2), brain cancer (N = 1), sarcoma (N = 1), 
benign disease (N= 1), and other cancers (N = 5).

Animals
Ten female immunodeficient Naval Medical Research 
Institute (NMRI)-NUDE mice aged 6–7 weeks were pur-
chased from Taconic, Denmark. Mice were housed in 
groups, fed pellets and water ad libitum, and kept under 
controlled 12-h light/12-h dark cycles at 20–22  °C. One 
week after arrival the mice were anesthetized using 
Zoletil (Virbac, France), xylazin (Scanvet, Denmark), 
and butorphanol (Zoetis, New Jersey) before they were 
ovariectomized to increase endogenous FSH levels. 
Post-operative analgesia in the form of buprenorphine 
(Temgesic, Indivior UK Limited, UK) and carprofen 
(Norodyl, ScanVet, Denmark) was used. Two weeks after 
ovariectomy either six (4-week study) or eight pieces (3, 
6, 10  days study) of human ovarian cortex were trans-
planted subcutaneously to the back of each mouse. After 
surgery the mice were single housed for at least 1 week. 
Euthanasia was performed by cervical dislocation, upon 
graft retrieval.

Thawing and needle puncturing
Thirty-six pieces of cryopreserved ovarian tissue was 
thawed according to standard clinical procedure [43]. 
Each cortex piece (approximately 5 × 5x2 mm) was cut 
into two halves, after the initial thawing, where one half 
functioned as the untreated control and the other half 
as the piece receiving needle puncturing. The mechani-
cal injury treatment in the form of needle puncturing was 
performed during the second half of the thawing proce-
dure, without prolonging the thawing process. The treat-
ment was performed by impaling the cortex piece with a 
29-gauge needle 150–200 times, to ensure that the whole 
tissue piece was covered with small puncture wounds, see 
Fig. 1. A29-gauge needle (0.337 mm) was chosen to inflict 
small puncture wounds and to avoid removal of tissue 
during the puncturing. After treatment both treated and 
untreated tissue pieces were processed through the rest 
of the thawing process.

Experimental design and xenotransplantation
The experimental design is presented in Fig.  2. After 
thawing and preparation of the cortex pieces, the pieces 
were directly transplanted to ovariectomized NMRI-
NUDE mice. Two separate xenograft studies were per-
formed in parallel to evaluate the effect of mechanical 
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injury by needle puncturing during short-term (3, 6 and 
10 days) and long-term (4 weeks) xenografting compared 
to an untreated control. Grafts were retrieved after 3, 6 
and 10  days to evaluate the critical revascularization 

window of the ovarian cortex xenograft (N = 8; 2 cor-
tex pieces from 8 patients, 8 xenografts per mouse). The 
4-week setup was performed for follicle density evalu-
ation because at this time point, atretic follicles has 

Fig. 1  Needle puncturing of human ovarian cortex tissue prior to transplantation. Periodic acid-Shiff (PAS) stained section from cryopreserved 
and thawed human ovarian cortex tissue. (a) Human ovarian cortex tissue with no needle punctures, serving as the untreated control. (b) Needle 
punctured human ovarian cortex, showing holes throughout the tissue. Scale bar = 200 μm

Fig. 2  Experimental setup. Cryopreserved ovarian cortex tissue from 20 patients was thawed and cut into two halves with one half receiving 
needle puncturing and the other half serving as the untreated control. The cortex pieces were xenografted to immunodeficient mice. Grafts was 
retrieved after 3, 6 and 10 days (N = 8) for immunohistochemistry and gene expression analysis, and after 4 weeks for histological analysis of follicle 
density and morphology. (a) CD31 staining after 10 days of xenografting from control group. Scale bar = 250 µm. (b) PAS-stained section from 
4-week xenografted ovarian tissue showing representative follicles. Scale bar = 100 µm
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been reabsorbed and only surviving follicles permeate 
the ovarian xenografts (N = 12; 1 cortex piece from 12 
patients, 6 xenografts per mouse). Grafts retrieved after 
short-term xenotransplantation on day 3, 6 and 10, were 
evaluated for gene expression by quantitative reverse 
transcription PCR (qRT-PCR) and revascularization 
by immunohistochemistry (IHC). Follicle counts and 
morphological assessment was evaluated in the 4-week 
xenografts.

Graft retrieval and histological processing
Grafts were dissected from the mice and cleaned for sur-
rounding murine tissue. Grafts retrieved after 3, 6 and 
10  days were cut into half; one half for qRT-PCR was 
snapfrozen and stored at -80ºC, and the other half was 
fixated in 4% paraformaldehyde (PFA) for IHC analysis. 
The grafts retrieved after 4  weeks were fixed in Bouin’s 
solution for histological evaluation. The fixation was 
done overnight, then dehydrated and embedded in par-
affin for sectioning. For IHC the samples were sectioned 
at 5 μm thickness, and for follicle evaluation the samples 
were sectioned at 10  μm thickness for Periodic-Acid-
Schiff (PAS) staining.

Quantitative RT‑PCR
The human ovarian cortex tissue was homogenized, 
and RNA-isolation, reverse transcription and qRT-
PCR was performed as previously described [26]. 
In brief, samples were soaked in -80  °C Invitrogen™ 
RNAlater™-ICE Frozen Tissue Transition Solution (Cat. 
No. AM7030, ThermoFisher Scientific) overnight and 
transferred to RLT lysis buffer (Cat. No. 79216, Qia-
gen) with β-mercaptoethanol. Samples was homog-
enized using a Qiagen TissueLyser II (Cat. No. 85300) 
and RNA-isolation was performed with a RNeasy mini 
kit (Cat. No. 74106, Qiagen) (Silica spin columns: Cat. 
No 1920–250, EpochLifeScience). Isolated RNA was 
used to do first-strand cDNA synthesis using the High 
Capacity cDNA Reverse Transcription Kit (Cat. No. 
4368814, Applied Biosystems, ThermoFisher Scien-
tific, Carlsbad, CA, USA) following manufacturer’s 
instructions. For qRT-PCR analysis TaqMan technol-
ogy (Applied Biosystems) using TaqMan® fast advanced 
master mix (Cat. No. 4444964, ThermoFisher Scien-
tific). Predesigned TaqMan® gene expression assays 
were performed using following genes: Murine Vascular 
Endothelial Growth Factor Alpha (Vegfα),Angiopoietin 
1 (Angpt1), Angiopoietin 2 (Angpt2), Angiopoietin-like 
4 (Angptl4) and human B-Cell Lymphoma 2 (BCL2) 
and BCL-2 associated X protein (BAX), (probe-id: 
Vegfα, Mm00437306_m1; Angpt1, Mm00456503_m1; 
Angpt2, Mm00545822_m1; Angptl4, Mm00480431_
m1; BCL2, Hs00608023_m1; BAX, Hs00180269_m1). 

Glyceraldehyde 3-phosphatdehydrogenase (Gapdh/
GAPDH) was used as endogenous control for both 
murine and human gene expression assays [44] (probe-
id: GAPDH, Hs02786624_g1; Gapdh, Mm99999915_m1). 
The cDNA samples were amplified in duplicates using the 
LightCycler®480 quantitative PCR instrument (Roche, 
version 1.5.0.39) as previously described [21, 26].

Immunohistochemical analysis
To analyse the revascularization of the xenografts, the 
endothelial cell marker CD31 was used to visualize 
murine blood vessels. Four sections from each graft were 
stained. A murine liver section was included as a positive 
control, and non-grafted human ovarian tissue was used 
as a negative control. The IHC analysis was performed as 
described previously [21, 26]. In brief, sections were de-
paraffinized, rehydrated and antigen retrieval was per-
formed using 10  mM sodium citrate (pH 6), following 
blocking using horse blocking serum (Vector Laborato-
ries, Burlingame, CA, USA) and blocking of endogenous 
activity with 3% H2O2. Next, monoclonal anti-rabbit 
CD31 (Pecam-1) primary antibody (catno.: 77699, Cell 
Signaling Technology, Herlev, Denmark. Dilution: 1:100) 
diluted in 1% bovine serum albumin (1:100) was added 
to the slides and incubated overnight at 4 °C in a humid 
chamber. The following day the sections were incubated 
with the secondary antibody (ImmPRESS™ HRP Horse 
Anti-Rabbit IgG Polymer Detection Kit, Peroxidase, 
Cat. No. MP-7401, Vector Laboratories, Burlingame, 
CA, USA), washed and staining was visualized with 
3.3′-diaminobenzidine tetrahydrochloride (DAB + Sub-
strate Chromogen System, Dako, Glostrup, Denmark) 
and briefly dipped in diluted (1:3 water) Mayers Hema-
toxylin. IgG-negative controls were performed by exclud-
ing the primary and only using antibody dilution buffer. 
Digital pathology using Whole Slide Imaging (WSI) tech-
nology and the Visiopharm Author™ module was used 
to quantify the CD31-positive endothelial area and the 
number of vessels per mm2. The scanning of the slides 
was performed using the NanoZoomer S360 digital slide 
scanner with magnification × 40 and one focal point. 
Scanned WSI files were analysed in the Visiopharm Inte-
grator System (VIS) using the APP via the Visiopharm 
Author™ module. The APP used has been described ear-
lier [21, 45]. The APP automatically recognized the tis-
sue as the ROI, and afterwards murine host tissue was 
manually excluded before running the APP. Vessels were 
subdivided into three categories according to size: micro 
vessels (< 300 µm2), small vessels (300–1000 µm2) and 
large vessels (> 1000–3000 µm2). Heatmaps were gener-
ated for each section to visualize and highlight the CD31 
positive areas in the ovarian tissue xenografts (Fig. 3).
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Follicle density and morphology
Follicle density was evaluated in the xenografts after 
4  weeks. Only morphological ‘normal’ follicles with 
clear nucleus were counted, and follicles were defined 
and counted as previously described [26]. Primordial 
follicles were characterized by an oocyte surrounded 
by a single layer of flat granulosa cells. Primary follicles 
as oocytes surrounded by a layer of cuboidal granulosa 
cells, and secondary with two or more layers of cuboi-
dal granulosa cells [46]. Morphologically, follicles were 
subcategorized as healthy follicles or atretic follicles 
[47, 48]. For area measurement Olympus BH-2 micro-
scope with Visiopharm Integrator System software 
(Visiopharm, Hoersholm, Denmark, version 4.6.1779) 
was used. Density was calculated by the total number of 
follicles and the volume of the graft based on the area 
measurements. Follicle morphology was subcatego-
rized (healthy or atretic), percentages from total num-
ber of the subcategories was used to visualize the data 
(Fig. 6).

Statistical analyses
Statistical analysis was performed using R version 4.2.1. 
(R Foundation for Statistical Computing, Vienna, Aus-
tria) (linear mixed model, multiple comparison Tukey 
post hoc). Gene expression, CD31 positive area (%), and 
follicle morphology data was log transformed, before 
analyzing data. All analyses comparing control and treat-
ment with respect to gene expressions, CD31 positive 
areas, vessel densities, follicle densities and morphol-
ogy were analysed with a linear mixed-effects model 
with patient as a random effect as each woman contrib-
utes with more than one sample in the study. Differences 
between individual groups were analysed using a Tukey 
post hoc test. P-values < 0.05 were considered significant, 
p > 0.10 as tendencies.

Results
Revascularization
The murine CD31 area in the human ovarian cor-
tex tissue was determined after 3, 6 and 10  days of 

Fig. 3  Heatmaps of CD31 stained human ovarian xenografts after 3, 6 and 10 days. Heatmap visualization from needle and control group on day 3, 
6 and 10 from two patients
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xenografting with or without needle puncturing prior 
to transplantation. The CD31 positive area was calcu-
lated as the percentage of the total section area, and 
the CD31 density was calculated as the number of ves-
sels per mm2. Furthermore, heatmaps was generated 
to make a visual representation of where the CD31 
positive areas was located in the tissue (Fig.  3). There 
was a significant increase in the CD31 area from day 
3 until day 10 with a dramatic increase in the CD31 
area between day 6 and day 10 (Fig.  4a). In the 3-day 
xenografts there was an average of 0.02 ± 0.01% CD31 
positive area in the needle group and 0.05 ± 0.02% in 
the control group. In the 6-day xenografts there was an 
average of 0.31 ± 0.11% CD31 positive area in the nee-
dle group and 0.34 ± 0.08% in the control group. For the 
10-day xenografts there was an average of 2.8 ± 0.56% 
CD31 positive area in the needle group and 3 ± 0.56% 
in the control group. No significant differences were 
found in CD31 positive area between the control and 
needle group.

The vessel density (vessels/mm2) on day 3 was 
10.26 ± 6.08 vessels/mm2 for the control group and 
5.62 ± 3.47 vessels/mm2 for the needle group (Fig.  4b). 
On day 6 the vessel density was 32.13 ± 19.74 vessels/
mm2 for the control group and 48.27 ± 42.7 vessels/mm2 
for the needle group. The vessel density was 552.9 ± 337.5 
vessels/mm2 for the control group and 326.4 ± 116.39 
vessels/mm2 for the needle group on day 10, however, 
there was no significant difference between needle and 
control group at any timepoint (p = 0.223, p = 0.377 and 
p = 0.626). There was a significant increase in vessel 
density between the different timepoints in both groups 
(p < 0.05).

The APP subdivided the CD31 positive areas into cat-
egories according to size: micro vessels (< 300 µm2), small 
vessels (300–1000 µm2) and large vessels (> 1000–3000 
µm2). The distribution of between the subgroups was not 
different at any timepoint and the main proportion of 
vessels was micro vessels (97–88%). Table 1 includes the 
data from CD31 and the distribution of the subgroups.

Fig. 4  Revascularization of human ovarian xenografts after 3, 6 and 10 days. (a) Graph showing mean CD31 positive area of total section area 
(%) from each timepoint and group (mean ± SEM). (b) Graph showing vessel density from each timepoint and group, lines indicate significant 
difference between timepoints but no treatment effect



Page 7 of 13Olesen et al. Reproductive Biology and Endocrinology           (2023) 21:28 	

Expression of angiogenic and apoptotic genes
Gene expression of angiogenic and apoptotic mark-
ers was evaluated in human ovarian tissue after 3, 6 and 
10 days xenografting. The expression of murine Ang1 and 
Ang2 had similar patterns of expression over the differ-
ent time points for both the needle and control group 
(Fig.  5a+ b). In the control group both genes increased 
from day 3, to day 6 and to day 10, however, in the needle 
group the expression of Ang1 and Ang2 did not increase 
from day 6 to day 10 but remained at the level of day 6 
(p < 0.001, p = 0.027). The gene expression of murine 
Vegfα showed a tendency toward a higher expression 
in the needle group compared to the control group at 
all three timepoints (Fig.  5c), and for day 6 this differ-
ence was almost significant (p = 0.051). The expression 
of murine Angptl4 was similar on day 3 and 6 (Fig. 5d), 
but there was a decrease from day 6 to day 10 in both 
control and needle groups and the decrease was signifi-
cant for the needle group (p = 0.043). The ratio of human 
BAX/BCL2 was similar at all three time points and there 
was no difference between the needle and control groups 
(Fig. 5e).

Follicle density and morphology
The xenografted ovarian tissue retrieved after 4  weeks 
was used to evaluate the morphology and the total num-
ber of follicles in each graft (Fig. 6). A total of 1150 fol-
licles were counted. Based on the follicle number and the 
volume of the graft, the follicle densities were estimated 
(Fig.  6a). The mean follicle density in the xenografted 
needle treated tissue was 5.18 follicles/mm3 ± 2.24 with a 
range of 0.3 to 26.0 follicles/mm3, compared to a density 
of 2.36 follicles/mm3 ± 0.67 with a range of 0.3 to 5.7 fol-
licles/mm3 in the xenografted controls. Moreover, 7 out 
of 12 patients had a higher follicle density in the needle 
group compared to the control. These results showed a 
1.7-fold higher follicle density for the treatment group 
compared to the grafted controls, however this differ-
ence was not significant (p = 0.208) (Fig. 6b). There was 
no significant difference between follicle stages in the 
two groups, with 93–97% of all follicles counted being 

primordial follicles. After morphological assessment, 292 
out of the total 1150 follicles were categorized as atretic. 
For the needle group 19% of the follicles was atretic and 
for the grafted control it was 36% (Fig. 6e), and this dif-
ference was significant (p = 0.045).

Discussion
This is the first study investigating if mechanical injury 
by needle puncturing could increase revascularization 
and hereby follicle survival in xenotransplanted human 
ovarian tissue. Current results showed no statistically 
significant differences in murine vessel density in human 
ovarian xenografts after needle puncturing compared to 
untreated control grafts. However, gene expression data 
did show differences in the expression patterns of angi-
ogenic factors indicating an effect of the needle punc-
turing on the regulation of these genes. Furthermore, a 
higher follicle survival was observed in the needle group 
compared to control, although not statistically signifi-
cant, and there was a significant difference in morphol-
ogy, where the needle group had more morphological 
healthy follicles compared to control. Taken together our 
findings indicate that needle puncturing does not directly 
increase revascularization of ovarian xenografts, but it 
appears to affect the expression of angiogenic genes and 
has a positive effect on the follicle morphology.

Without vascular re-anastomosis, the tissue grafted 
is solely dependent on the development and invasion of 
new blood vessels. Xenografting studies has previously 
shown that the host is primarily responsible for revascu-
larization of the xenografted human ovarian cortex [49]. 
And research in rodents has shown that the first signs 
of revascularization is observed two to three days after 
transplantation and stabilization is achieved after a lit-
tle more than a week [49–51]. As expected, we observed 
very little murine vessel formation on day 3, confirm-
ing that this time point shows the initial vessel forma-
tion, this also correlates with another study which could 
not measure the partial pressure of O2 before day 3 in 
xenografted human ovarian tissue [52]. After 6  days we 

Table 1  Revascularization data after 3, 6 and 10 days grafting

Data presented as densities and percentages ± standard error of mean (SEM)

3 days 6 days 10 days

Control Needle Control Needle Control Needle

Vessel density (vessels/mm2) 0.005 ± 0.005 0.003 ± 0.003 0.016 ± 0.016 0.024 ± 0.030 0.276 ± 0.242 0.165 ± 0.099

Mean CD31 positive area (%) 0.04 ± 0.039 0.02 ± 0.013 0.35 ± 0.082 0.32 ± 0.118 3.05 ± 0.566 2.84 ± 0.563

Micro vessels (%) 94.7 97.8 92.7 88.0 89.9 90.0

Small vessels (%) 5.1 2.2 6.5 10.7 8.7 8.4

Large vessels (%) 0.2 0.0 0.8 1.3 1.4 1.6
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observed an increase in vessel formation compared to 
day 3 xenografts, however, the observed increase was not 
significantly higher. Between day 6 and 10 we observed a 
significant increase in vessel density in the human ovar-
ian xenografts, reaching a vascularized area of approxi-
mately 3% of the grafts, which is comparable with our 
previous study [21]. These results show that the main 
vascularization of the grafted ovarian tissue occurs 
between day 6 and 10, confirming that areas of the graft 
are subjected to prolonged ischemia and hypoxia lasting 
up to at least 6 days. These results together with our pre-
vious findings [21] indicate that the burst in vessel for-
mation occurs after 6 to 10 days, showing that the burst 

in vascularization happens during a short window of two 
to three days, giving us insight at which time point the 
ischemia/ reperfusion injury is the most intense. Further-
more, current results did not show any difference in ves-
sel density between the needle group and control group, 
and we therefore conclude that needle puncturing did not 
increase revascularization of xenografted human ovar-
ian tissue. In our previous study we used Er:YAG laser to 
induce controlled tissue damage in human ovarian cortex 
prior to xenotransplantation, and we found a significant 
decrease in revascularization and follicle survival com-
pared to control after grafting which indicated that this 
form of tissue damage was detrimental to the graft [21]. 

Fig. 5  Expression of angiogenic and apoptotic genes in human ovarian xenografts after 3, 6 and 10 days. (a-d) Relative expression of the murine 
angiogenic genes: Angiopoetin 1 (Ang1); Angiopoetin 2 (Ang2); vascular endothelial growth factor alpha (Vegfα); Angiopoetin-like-4 (Angptl4). (e) 
Ratio of human anti- and- pro- apoptotic factors B-cell lymphoma2 (BCL2) and Bcl-2-associated X protein (BAX). Data presented as (mean ± SEM), 
and significant differences between timepoints are indicated by lines and symbols represent significant treatment effect
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Our current results using needle puncturing showed no 
signs of detrimental effects on revascularization, follicle 
survival or the ratio of BAX/BCL2, demonstrating that 
this is not a harmful procedure.

The gene expression data of Vegf, did show a tendency 
toward a treatment effect on day 6, and there was a higher 
expression level in the needle group compared to control 
at the other time points. Moreover, there was a consistent 
and similar expression on all time points, showing that 
Vegfα is expressed in the human ovarian tissue early and 
consistently after transplantation. The expression of Ang1 
and Ang2 had similar patterns, which was surprising due 
to their opposite nature. ANG1 and ANG2 act through 
the same tyrosine kinase receptor, Tie-2. They both have 
pro-angiogenic effects in the presence of VEGF, how-
ever they exert opposite effects upon receptor binding. 
ANG1 stabilizes the blood vessels formed through the 
actions of VEGF [53], whereas ANG2 destabilizes and 

in the presence of VEGF is important for endothelial 
cell proliferation and migration [54]. If VEGF is not pre-
sent ANG2 has antagonizing effects and leads to vessel 
destabilization followed by regression and endothelial 
cell death [55–57]. Moreover, ANG1 and ANG2 is an 
intricate and complex balance important for angiogen-
esis and has been shown to be important for follicular 
angiogenesis, ovulation, and corpus luteum formation 
[58]. The observed increase of Ang1 and Ang2 could be 
explained by the increase in angiogenic processes, how-
ever, Ang2 is also increased and important during inflam-
mation and hypoxia [59–61], which could explain the 
increase of Ang2 expression from day 3, 6 and also day 
10 for the control group. However, the same increase 
was not observed for the needle group, which is consist-
ent with our previous results using the Er:YAG laser [21]. 
ANGPTL4 has been proposed to have the same context 
dependent pro- and anti-angiogenic effect as ANG2 

Fig. 6  Follicle density and morphology in human ovarian xenografts after 4 weeks. (a) Follicle density for control and needle group after 4-week 
xenografting. Each dot represents a patient, and values are shown as number follicles per mm3 (mean ± SEM). (b) Follicle density given in fold 
change within paired samples from the same patient. (c, d) PAS-staining showing representative examples of follicles (scale bar = 100 µm) in the 
control (c) and needle group (d). (e) Follicle morphology shown in percentage of total number of follicles. Symbol represent significant treatment 
effect
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[62–64], and also having the same co-dependent relation-
ship with VEGF to be proangiogenic [65]. Furthermore, 
ANGPTL4 is important for wound healing and expres-
sion is stimulated by hypoxia [64, 66]. Angptl4 was simi-
larly expressed on day 3 and 6, but there was observed 
a decrease for both groups from day 6 to day 10, which 
could indicate the first pro-angiogenic period, where 
wound healing and revascularization is occurring stimu-
lated by the hypoxic period, where on day 10 there may 
be a stabilization which leads to the decrease in Angptl4 
expression. Taken together, the results indicate that the 
needle puncturing did affect the expression of angiogenic 
genes, and it illustrates the complexity of the revasculari-
zation process.

Current results showed significantly fewer atretic folli-
cles and a tendency toward a higher follicle density in the 
needle group compared to the control group. Moreover, 
no signs of follicle activation were observed in the needle 
punctured tissue as the vast majority of follicles were pri-
mordial follicles (97%) which was similar to the control 
group (93%). These results is comparable to our previ-
ous study where the Er:YAG laser treatment resulted in a 
lower follicle survival, however, the proportion of follicles 
in the different stages did not differ and did not suggest 
follicle activation in the laser treated group compared 
to control [21]. The effect on the follicle survival can-
not be explained by a higher revascularization of the tis-
sue, however we did observe an effect on the angiogenic 
genes, showing that the needle puncturing did affect the 
gene expression in the xenografted tissue. Therefore, it is 
plausible that other signaling pathways associated with 
wound healing can be affected by the needle puncturing 
and contribute to the beneficial effects on follicle sur-
vival. Furthermore, controlled tissue damage in the form 
of needle puncturing can to some degree be compared 
with tissue fragmentation, because both methods inflict 
mechanical injury to the tissue. De Roo and colleagues’ 
found that fragmentation of human ovarian tissue before 
culture resulted in activation of primordial follicles 
through the hippo and PI3K/Akt pathway [67]. Further-
more, ovarian fragmentation has been studied as a way to 
activate follicle growth as treatment for premature ovar-
ian insufficiency [68]. However, a study by Lunding and 
colleagues did not find the same effect of fragmentation 
when human ovarian tissue was transplanted to immu-
nodeficient mice for 6 weeks as no significant differences 
in follicle stages were reported [69]. These studies dem-
onstrate that there are contradicting results regarding 
follicle activation following ovarian tissue fragmentation 
or disruption. Taken together, there is evidence that the 
way the mechanical injury is performed influences the 
outcome, and that is also varies between tissue types [21, 
42, 70]. In this study, the mechanisms behind the positive 

effects on follicle survival and morphology induced by 
the needle puncturing cannot be explained by increased 
revascularization which warrants further investigations 
to uncover potential mechanisms and to investigate the 
possibilities with mechanical injury.

Conclusion
Needle puncturing of thawed human ovarian tissue prior 
to transplantation was not able to increase revasculari-
zation in the human ovarian xenografts. However, nee-
dle puncturing did affect the expression of angiogenic 
genes and resulted in slightly higher follicle survival and 
significantly better follicle morphology in the ovarian 
xenografts compared to control. Current results call for 
further investigations of needle puncturing in the context 
of OTT.
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