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Abstract 

Background The predictive capability of time‑lapse monitoring (TLM) selection algorithms is influenced by patient 
characteristics, type and quality of data included in the analysis and the used statistical methods. Previous studies 
excluded DET cycles of which only one embryo implanted, introducing bias into the data. Therefore, we wanted to 
develop a TLM prediction model that is able to predict pregnancy chances after both single‑ and double embryo 
transfer (SET and DET).

Methods This is a retrospective study of couples (n = 1770) undergoing an in vitro fertilization cycle at the Erasmus 
MC, University Medical Centre Rotterdam (clinic A) or the Reinier de Graaf Hospital (clinic B). This resulted in 2058 
transferred embryos with time‑lapse and pregnancy outcome information. For each dataset a prediction model was 
established by using the Embryo‑Uterus statistical model with the number of gestational sacs as the outcome vari‑
able. This process was followed by cross‑validation.

Results Prediction model A (based on data of clinic A) included female age, t3‑t2 and t5‑t4, and model B (clinic B) 
included female age, t2, t3‑t2 and t5‑t4. Internal validation showed overfitting of model A (calibration slope 0.765 
and area under the curve (AUC) 0.60), and minor overfitting of model B (slope 0.915 and AUC 0.65). External valida‑
tion showed that model A was capable of predicting pregnancy in the dataset of clinic B with an AUC of 0.65 (95% CI: 
0.61–0.69; slope 1.223, 95% CI: 0.903–1.561). Model B was less accurate in predicting pregnancy in the dataset of clinic 
A (AUC 0.60, 95% CI: 0.56–0.65; slope 0.671, 95% CI: 0.422–0.939).

Conclusion Our study demonstrates a novel approach to the development of a TLM prediction model by applying 
the EU statistical model. With further development and validation in clinical practice, our prediction model approach 
can aid in embryo selection and decision making for SET or DET.
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Background
Selection of embryos with the highest implantation 
potential remains a challenge during in vitro fertilisation 
(IVF) treatment. Nowadays this is an even more impor-
tant task because of the preference for single embryo 
transfer (SET) to decrease the risks of a twin pregnancy. 
Since the beginning of human IVF, morphological assess-
ment and scoring of an available cohort of embryos has 
been the method of choice to select or deselect embryos 
for transfer [1, 2]. This method was refined and extended 
during the last decades, for example by adding the evalu-
ation of pronuclear stage morphology [3, 4] or blastocyst 
stage morphology [5, 6]. To promote standardization of 
this process, a consensus on morphological criteria for 
embryo assessment was reached [7].

Over the past decade, time-lapse embryo culture is 
increasingly used as a semi-quantitative tool to research 
the timing of embryo development and the correla-
tion with implantation. Yet, there is still insufficient 
good quality evidence for superiority of embryo selec-
tion based on morphokinetic parameters compared to 
selection based on morphology [8, 9]. Results of studies 
on the correlation between time-lapse morphokinetics 
and implantation were used to develop embryo selec-
tion algorithms. Studies with different sample sizes and 
statistical approaches have led to either centre-specific, 
multicentre or generally applicable models [10–18]. Not 
all studies performed external validation after develop-
ing their algorithm, and a decreased predictive capabil-
ity was observed during external validation in some cases 
[19–22]. Possible explanations are heterogeneous patient 
populations, culture conditions and transfer policy. This 
underlines the importance of centre-specific models.

The predictive capability of time-lapse selection algo-
rithms can be influenced by patient characteristics, type 
of data included in the analysis and the used statistical 
methods. Most of the earlier developed morphokinetic 
embryo selection algorithms did not include patient 
characteristics. However, female age is a patient charac-
teristic known to be important for implantation success. 
Significantly different implantation rates were demon-
strated in different female age groups of embryos with 
the same grading according to four previously published 
models [21]. Furthermore, another study found that 
female age affected the timing of the cleavage division 
to the 2- and the 4-cell stage [23]. Thus, female age can 
be a confounding factor in embryo selection algorithms. 
In addition, the importance of analysing patients, rather 
than embryos, as independent observations was already 
emphasized [24]. Second, in most studies, selection algo-
rithm development was based on an optimal timing for 
the duration of an interval between two cell stages, result-
ing in the deselection of embryos out of range. However, 

consensus about the optimal timing and therefore the 
appropriate cut-off values is not yet reached. Time-con-
suming annotations are usually needed because of the 
inclusion of parameters up until the 8-cell stage, and this 
reduces clinical applicability. Finally, previously published 
studies excluded double embryo transfers (DETs) result-
ing in only one implanted embryo, because of a partial 
observability problem. This results in a substantial loss of 
data and introduces selection bias. This particular group 
of patients cannot be analysed using a classical multilevel 
statistical model. The previously developed embryo-
uterus statistical model (EU model) is able to overcome 
this problem by combining couple or cycle level effects 
with embryo level effects. The framework of this model 
was introduced by Speirs and colleagues, and it was fur-
ther developed over time [25]. Roberts demonstrated the 
clinical applicability of this model to real IVF data [26]. 
Correlations between embryos that implanted simul-
taneously are included in this model [25, 27–30]. This 
provides the opportunity to analyse all SETs and DETs 
resulting in a twin- or no pregnancy, but importantly also 
DETs resulting in a singleton pregnancy.

Our aim was to develop a TLM prediction model that 
is able to predict pregnancy chances after SET and DET 
by using both morphokinetic parameters and female age. 
To this end, we used the EU statistical model, enabling 
the inclusion of cycles with DET that resulted in only 
one implanted embryo and thereby minimizing selection 
bias. We developed two models based on centre-specific 
data from two different clinics. After developing the 
models, they were cross validated to test if these centre-
specific prediction models also show comparable perfor-
mance in the other independent IVF clinic. In addition, 
we examined if the models can predict the chance of a 
twin pregnancy after DET and thereby aid in the decision 
between SET and DET.

Methods
Study population
A retrospective cohort included couples undergoing IVF 
with or without intracytoplasmic sperm injection (ICSI) 
at the Erasmus MC, University Medical Centre Rot-
terdam (clinic A) between January 2012 and June 2019, 
and at the Reinier de Graaf Hospital (clinic B), between 
January 2013 and June 2019. Embryos were cultured in 
an EmbryoScope time-lapse incubator (Vitrolife, Göte-
borg, Sweden). All couples during the study period were 
included, with the exception of couples without fertilized 
oocytes (as indicated by the presence of two pronuclei) 
or if their embryo(s) had not reached the 5-cell stage 
three days after fertilization. In addition, only cycles with 
autologous, fresh oocytes were included. From couples 
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undergoing multiple cycles during the study period, 
only data from their first available treatment cycle was 
included.

Ovarian stimulation, oocyte insemination, embryo culture 
and transfer
Women underwent routine ovarian stimulation by either 
a GnRH-agonist or -antagonist co-treatment protocol 
with recombinant- or urinary- follicle stimulating hor-
mone (FSH; Menopur, Ferring, St. Prex, Switzerland, 
Gonal-F, Merck Serono, Switzerland, Bemfola, Gedeon 
Richter Benelux, Belgium, or Rekovelle, Ferring, St. Prex, 
Switzerland) [31]. Human recombinant chorionic gon-
adotropin (hCG) (Ovitrelle, Merck Serono, Switzerland, 
Pregnyl, Organon, the Netherlands) was used as a trig-
ger of final follicular maturation. Oocytes were fertilized 
according to routine IVF or ICSI procedures. Insemi-
nated and injected oocytes were placed in EmbryoSlide 
culture dishes (Vitrolife, Sweden) and cultured in an 
EmbryoScope time-lapse incubator (Vitrolife, Sweden). 
In clinic A, the culture medium used was G-1 PLUS (Vit-
rolife, Sweden) cleavage stage culture medium between 
January 2012 and November 2014 or SAGE 1-step 
(Origio/Cooper Surgical, Trumbull, CT, USA) culture 
medium between November 2014 and June 2019 at 36.8 
degrees Celsius, 7% oxygen and 5–6% carbon dioxide 
(Table 1). In clinic B the culture medium used was either 
Sage CM (Origio/Cooper Surgical, USA) culture medium 
between January 2013 and May 2015, SAGE 1-step (Ori-
gio/Cooper Surgical, USA) or G-TL (Vitrolife, Sweden) 
culture medium between June 2015 and October 2015 
and SAGE 1-step (Origio/Cooper Surgical, USA) culture 

medium between October 2015 and June 2019 at 36.9 
degrees Celsius, atmospheric oxygen and 5–6% carbon 
dioxide (Table 1). Embryo transfer was performed on day 
3 and embryos were cryopreserved on day 4 or day 5 until 
the  1st of April 2019. Afterwards, due to a change in labo-
ratory policy at clinic A, embryo transfer selection was 
performed on day 5 after fertilization. This concerned 
24 treatment cycles included in this cohort. In both clin-
ics, it is standard care to transfer a single embryo. Only 
women aged 38  years or older without medical contra-
indications or women undergoing their third or higher 
treatment cycle can opt for double embryo transfer. 
Embryo selection for transfer was not aided by time-
lapse information and was performed on a single image 
acquired by the EmbryoScope at 66–68  h post-fertili-
zation or -injection. Embryo morphology was ranked 
according to the number of blastomeres, fragmentation, 
equality of blastomere size and cell contact. Top ranking 
embryos contained eight blastomeres of equal size, with 
less than 10% fragmentation and maximum cell contact 
between the blastomeres. Additionally, if embryos with 
comparable quality were present on day 3 at clinic B, the 
number of blastomeres on day 2 (44 ± 1  h post insemi-
nation/injections) was added to the selection criteria fol-
lowed by early cleavage according to previous literature 
to prefer early cleavage above late cleavage [32–34]. The 
number of gestational sacs was confirmed by ultrasound 
at 12 weeks of gestation.

Time‑lapse monitoring and assessment
Images were recorded automatically in seven focal planes 
with 15  μm intervals, every 10–15  min. The Embryo-
Scope uses a monochrome CCD camera with a single red 
LED at 635 nm with an exposure time of < 0.1 s per image, 
and a total light exposure time < 50 s per day per embryo. 
For IVF, t = 0 in both clinics was defined as the time of 
insemination. At clinic A t = 0 for ICSI was defined as 
the time of injection of the last oocyte, with the whole 
procedure taking between 20–50 min depending on the 
number of oocytes. Clinic B defined t = 0 for ICSI as the 
time halfway through injecting the spermatozoa into the 
available oocytes. Manual annotations were performed 
by four specifically trained members of our team accord-
ing to the definitions and guidelines by Ciray and col-
leagues [35]. We annotated the time of PN appearance 
(tPNa), number of pronuclei, the first frame where both 
pronuclei were faded (tPNf), as well as the exact timing 
of reaching the 2, 3, 4, 5, 6, 7- and 8-cell stage (t2, t3, t4, 
t5, t6, t7 and t8). All four trained members of our team 
annotated the same set of ten embryos, and we tested the 
inter-observer agreement by calculating intra-class corre-
lation coefficients (ICC). We found excellent agreement 
(intra-class correlation coefficient (ICC) > 0.9) for tPNa, 

Table 1 Patient‑ and treatment characteristics of cycles included 
in the time‑lapse analysis

Each cycle is derived from a unique patient couple. Data are presented as 
number (%) or median (IQR)

Abbreviations: IVF in vitro fertilization, ICSI Intracytoplasmic sperm injection

Clinic A Clinic B

Couples 706 1064

Number of analyzed 
embryos (fresh trans‑
fer)

784 1274

Female age (years) 34.3 (30.4–38.6) 35.5 (31.8–39.0)

Fertilization method IVF 233 (33%) 107 (10.0%)

ICSI 473 (67%) 959 (90.0%)

Culture medium Sage 1 479 (67.8%) 544 (51.1%)

Sage CM 0 (0%) 491 (46.1%)

Vitrolife 228 (32.2%) 29 (2.7%)

Oxygen 7% atmospheric

Carbon dioxide 5–6% 5–6%

Temperature (°C) 36.8 36.9
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tPNf and the cleavage divisions up until the 5-cell stage. 
Moderate agreement (ICC < 0.5) was found for the cleav-
age divisions between the 6- and the 8-cell stage.

The following time intervals between different develop-
mental points were calculated: t3-t2 represents the inter-
val between the 2-cell stage and the 3-cell stage and t5-t4 
represents the interval between the 4-cell stage and the 
5-cell stage.

Statistical analysis
First, we selected the parameters to test for their predic-
tive value when included into the model. As the TLM 
parameters up to the 5-cell stage showed the highest 
inter-observer agreement, we focused on these time 
points. Furthermore, to make the model more independ-
ent of fertilization method and culture conditions, we 
aimed to evaluate the duration of time intervals, rather 
than a specific time point of reaching a certain cell stage. 
We selected the duration of the interval between the 2- 
and the 3-cell stage (t3-t2), a parameter that was also 
previously shown to correlate with implantation [10, 17, 
36]. In addition, the duration of the interval between 
the 4- and the 5-cell stage was selected, as this showed 
large variation and it does not overlap with t3-t2. We 
also added the time until the first cleavage division (t2), a 
parameter known to correlate with implantation [33, 37].

Using these parameters, we performed manual back-
ward selection for inclusion in a multivariable EU-regres-
sion analysis. Predictors were eliminated from the model 
according to a relaxed criterion, a p-value > 0.3. We used 
a custom-written code in R [25–29]. The model consists 
of two logistic regression sub models, the ‘E’ and the 
‘U’ part. Where the ‘E’ part describes the chance that in 
the case of a suitable recipient an embryo will develop 
and the ‘U’ part the chance that the recipient is suit-
able. In this way, the correlation between two transferred 
embryos is taken into account. This gives the opportunity 
to analyse all SETs, DETs resulting in a twin- or no preg-
nancy, but also DETs resulting in a singleton pregnancy. 
The number of gestational sacs was used as the out-
come variable. For adequate performance of the model, 
the outcome variable should be close to implantation to 
avoid interference of other possible confounders. The 
model is fitted using direct maximization of the likeli-
hood. Variations on the restricted cubic splines degrees 
of freedom (df ) were considered; we started with two df 
for all variables and adjusted this when necessary.

After developing the models, we evaluated the pre-
dictive performance of both models. Discrimination, 
as expressed the area under curve (AUC), displays the 
ability of our models to correctly differentiate between 
women with a pregnancy and women without a preg-
nancy after embryo transfer during IVF/ICSI treatment 

[38]. Perfect discrimination is indicated by an AUC of 
1 whereas no discrimination is indicated by an AUC of 
0.5. The AUC was calculated using the method suggested 
by Harrell et  al. [39]. The degree of agreement between 
predicted probabilities and observed outcomes is called 
calibration [38]. In our models, this will be the predicted 
probability of a pregnancy and the observed pregnancy 
rate. We assessed calibration graphically. In the case of 
perfect calibration, the plot shows a diagonal line with a 
slope of 1 and an intercept of 0.

Internal validation of both models on the prediction of 
pregnancy following SET was performed via bootstrap-
ping. The prediction model was built on each bootstrap 
sample. The average optimisms, the differences between 
the calibration slope and AUC of the bootstrap predic-
tion model on the entire dataset and of the bootstrap 
sample, were calculated and the apparent calibration 
slope and AUC were corrected accordingly. Most of the 
already existing TLM selection models did not include 
female age. To better understand the performance of 
our prediction models in the field of TLM models, we 
also provided an AUC of internal and external validation 
without female age.

Results
Patient‑ and treatment characteristics
The morphokinetic data from 706 IVF or IVF-ICSI treat-
ment cycles performed at clinic A, resulted in 784 trans-
ferred embryos that were used to develop prediction 
model A. In 628 cycles SET was performed and in 78 
DET. For the development of prediction model B, mor-
phokinetic data from 1064 IVF or IVF-ICSI cycles per-
formed at clinic B, resulting in 1274 transferred embryos 
were used. In 854 cycles SET was performed and in 
210 DET. Female age, fertilization method and culture 
characteristics of the cycles included in this study are 
shown (Table  1). Outcomes, in terms of the number of 
implanted embryos, are also shown (Table 2).

Prediction model A (based on data from clinic A)
We performed manual backward selection in a multivari-
able EU-regression analysis with the following param-
eters: female age, t2, t3-t2 and t5-t4. As the relationship 
between these parameters and gestational sacs was non-
linear, they were included using restricted cubic splines. 
This resulted in a final significant model including female 
age, t3-t2 and t5-t4, all with restricted cubic splines. The 
timing of fertilization can be different between normal 
IVF and IVF-ICSI, influencing the timing of subsequent 
morphokinetic events. This model, however, is independ-
ent of fertilization method, because t2 was excluded and 
only time intervals remained in the final model. These 
time intervals are not impacted by a delay in time to 



Page 5 of 12van Marion et al. Reproductive Biology and Endocrinology           (2023) 21:31  

fertilization for IVF compared to ICSI. A visual represen-
tation of the calculations of pregnancy chances made by 
the model is given (Fig. 1). To depict the non-linear pre-
dictive effects of t3-t2 and t5-t4, two plots were made for 
each of these variables respectively, with separate curves 
for selected values of female age, keeping the other vari-
able at a constant value close to the median (Fig. 1a and 
b). This is only done for the purpose of illustration; the 
model itself can predict pregnancy chances for all pos-
sible values of female age and the two morphokinetic 
parameters. Pregnancy chances after double embryo 
transfers can also be predicted. The optimal duration of 
t3-t2 is between 8 and 12 h. Pregnancy chances decline 
for all embryos that were slower or faster during this 
interval across all female ages. The optimal duration of 
t5-t4 is between 10 and 15 h.

Prediction model B (based on data from clinic B)
Again, we performed manual backward selection in a 
multivariable EU-regression analysis with the follow-
ing parameters: female age, t2, t3-t2 and t5-t4, using 
restricted cubic splines. This resulted in a final signifi-
cant model including female age, t2, t3-t2 and t5-t4. Only 
t5-t4 remained in the final model as a linear variable, the 
other variables were included as restricted cubic splines. 
To depict the predictive effects of t2, t3-t2 and t5-t4 three 
plots were made for each of these variables respectively, 
with separate curves for selected values of female age, 
keeping the other variables at a constant value close to 
the median (Fig. 2a, b and c). Again, this is only done for 
the purpose of illustration. The optimal timing of t2 is 
between 23 and 27 h, and the optimal duration of t3-t2 
is between 7 and 11 h. The pregnancy chance increases 
with an increasing duration of t5-t4.

Inclusion of the variables to the Embryo or Uterus part 
of the model
Female age and the morphokinetic parameters were 
added to the ‘E’ part of both models. No covariates were 
added to the ‘U’ part of the model, therefore this part of 
the model was the same for all patients. We performed 
a likelihood ratio test to check whether the best fit was 

for the model with female age in the ‘E’ part compared 
to the model with female age in the ‘U’ part. The best-
fitted model was the one with female age in the ‘E’ part 
according to AIC. Even without adding covariates to the 
‘U-part’ of the model, this part still consists of an inter-
cept. This intercept accounts for interdependence in DET 
transfers.

Internal and external validation of model A
We compared the observed percentage of pregnancies in 
the analysed dataset with the fitted percentage by the EU-
model (Table 3). The smallest deviation of observed and 
fitted percentages by model A was 0.8% in the category 
SET and not pregnant or one implanted embryo. The 
largest deviation was 4.9% in the category DET and not 
pregnant. Internal validation of the prediction of preg-
nancy following SET via bootstrapping showed overfit-
ting of model A with a calibration slope of 0.765 and an 
AUC of 0.60. The calibration plot of external validation of 
model A on data of clinic B is shown (Fig. 3a). The AUC 
was 0.65 (95% CI: 0.61–0.69) and the calibration plot 
showed a slope of 1.223 (95% CI: 0.903–1.561).

Internal validation of model A without female age, so 
only with the TLM parameters t3-t2 and t5-t4, resulted 
in an AUC of 0.57. External validation of this same 
model, on data of clinic B, showed an AUC of 0.58.

Internal and external validation of model B
For model B the smallest deviation of observed and fit-
ted percentages was 0.6% in the category SET and not 
pregnant or one implanted embryo. The largest devia-
tion being 2.2% in the category DET and two implanted 
embryos (Table  3). Internal validation of the prediction 
of pregnancy following SET via bootstrapping showed 
minor overfitting of model B with a calibration slope of 
0.915 and an AUC of 0.65. The calibration plot of exter-
nal validation of model B on the data of clinic A is shown 
(Fig. 3b). The calibration plot showed evidence of under-
estimation of the pregnancy chance. The AUC was 0.60 
(95% CI: 0.56–0.65) and the calibration slope 0.671 (95% 
CI: 0.422–0.939).

Table 2 Pregnancy outcomes of cycles included in the time‑lapse analysis. The number of gestational sacs was determined by 
ultrasound at 12 weeks of gestation

Data are presented as number (%)

Clinic A Clinic B

Not pregnant One gestational sac Two 
gestational 
sacs

Not pregnant One gestational sac Two gestational sacs

Single embryo transfer 385 (54.5%) 243 (34.4%) 0 (0%) 536 (50.4%) 318 (29.9%) 0 (0%)

Double embryo transfer 53 (7.5%) 21 (3.0%) 4 (0.6%) 137 (12.9%) 55 (5.2%) 18 (1.7%)
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Internal validation of model B without female age, 
so only with the TLM parameters t2, t3-t2 and t5-t4, 
resulted in an AUC of 0.61. External validation of this 
same model, on data of clinic B, showed an AUC of 0.56.

Applicability of the prediction models in the decision 
for SET or DET
The decision for SET or DET is a consideration 
between the optimal chance of pregnancy and to avoid 
the risks of a twin pregnancy. We investigated if our 
prediction model could aid in this consideration. As 
an example we investigated predictions of embryos 
originating from 10 patients of clinic A where a DET 
was performed (Fig.  4). These patients were selected 
on the basis that both transferred embryos had at least 
a predicted pregnancy chance of 30% using model A 
(according to morphokinetic parameters and female 
age). The model can predict an individual chance of 
pregnancy for each embryo separately, but can also 

predict the chance of a singleton and twin pregnancy 
after DET. For example, both embryos originating from 
patient 5 give a 42–43% predicted pregnancy chance 
when transferring these embryos separately (SET) 
according to our model A. In addition, the model also 
predicts that when both embryos are transferred, the 
singleton pregnancy chance remains 42%, but with a 
risk for a twin pregnancy of 21%. So transferring the 
second embryo does not increase pregnancy success, 
but only constitutes a risk for twinning. On the other 
hand, for patient 10 both embryos give a pregnancy 
chance of 30–31% when transferred separately. After 
DET of both embryos originating from patient 10, the 
singleton pregnancy chance is 39%, with a twin preg-
nancy chance of 11%. In this case, DET would increase 
pregnancy success, but with an 11% risk of a twin preg-
nancy. Considering these predictions before embryo 
transfer are helpful in the decision between SET and 
DET.

Fig. 1 Prediction of pregnancy chances of model A after single embryo transfer using female age and (a) t3‑t2, given that t5‑t4 is 13 h, and (b) t5‑t4 
given that t3‑t2 is 11 h. The different coloured lines depict different female ages
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Fig. 2 Prediction of pregnancy chances of model B after single embryo transfer using female age and (a) t2, given that t3‑t2 is 11 h and t5‑t4 is 
13 h; b t3‑t2 given that t2 is 25 h and t5‑t4 is 13 h and (c) t5‑t4 given that t2 is 25 h and t3‑t2 is 11 h. The different coloured lines depict different 
female ages

Table 3 Pregnancy outcome of the analysed cycles in terms of gestational sacs, as observed by ultrasound at 12 weeks of gestation. 
The observed percentages in the data and the fitted percentages by the prediction models are given

Data are presented as number (%)

Model A Model B

Not pregnant One
gestational sac

Two 
gestational 
sacs

Not pregnant One 
gestational 
sac

Two 
gestational 
sacs

Single embryo transfer Observed 61.3% 38.7% 0% 62.8% 37.2% 0%

Fitted 62.1% 37.9% 0% 63.4% 36.6% 0%

Double embryo transfer Observed 67.9% 26.9% 5.1% 65.2% 26.2% 8.6%

Fitted 63.0% 30.4% 6.6% 63.6% 25.6% 10.8%
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Discussion
Here, we aimed to develop a TLM prediction model 
that is able to predict pregnancy chances after SET and 
DET. This work resulted in two centre-specific prediction 
models that predict the chance for achieving a pregnancy 
based on a limited number of morphokinetic param-
eters and female age. Our used methods are new in the 
field and add another perspective to handling the data 

generated by time-lapse incubators and how this infor-
mation could be useful for decision making.

First, using the EU statistical model enabled us to 
include both SET and DET cycles, hereby selection bias 
is minimised. Previous studies only included known 
implantation data (KID), meaning SET resulting in one 
or no implanted embryo or DET resulting in two or no 
implanted embryos [10–13, 17, 18]. An advantage of 

Fig. 3 a Predicted probabilities by model B are plotted against the actual probability in the dataset of clinic A (solid black lines). b Predicted 
probabilities by model A are plotted against the actual probability in the dataset of clinic B (solid black line). The grey lines represent perfect 
calibration
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the EU-model is that it takes the chances of each spe-
cific embryo into account. Thus, it can predict if a DET 
will most likely result in one or two implanted embryos. 
Moreover, it can predict when the result is one implanted 
embryo, which one of the two embryos is the most 
likely candidate [25, 27–29]. Considering these predic-
tions before embryo transfer, can be helpful in the deci-
sion between SET and DET. The goal is to optimize the 
chance for implantation, but a high probability on a twin 
pregnancy can be unacceptable. Discussing these consid-
erations with patients before embryo transfer could be a 
valuable addition to informed- and shared decision mak-
ing. However, before clinical implementation, further 
optimization and prospective validation of our models 
needs to be performed.

Second, we created additional value by including 
female age. Pregnancy outcome is well known to be 
negatively associated with female age [40]. Compari-
son of implantation rates between women younger than 
35 years or 35 years or older, showed a significant differ-
ent implantation rate for embryos with the same grade 
according to TLM embryo selection algorithms [21]. 
Our models indicate a similar distribution of pregnancy 

chances in relation to morphokinetic parameters, but 
overall chances decrease with increasing age. Our mod-
els without female age performed less than our models 
including female age, according to a lower AUC. How-
ever, for the purpose of individualized prediction of preg-
nancy chances, the inclusion of female age in the model is 
helpful. Without the characterization of an embryo origi-
nating from a woman of a certain age, pregnancy chances 
are more of an average across all female ages, resulting 
in a less reliable prediction for a specific couple. Insight 
into an age related decrease in implantation potential 
per embryo could also enable cost-effectiveness consid-
erations, especially with regard to embryo selection for 
cryopreservation.

Furthermore, the models we developed generate con-
tinuous pregnancy chances rather than cut-off values 
based on specific developmental time intervals. First, no 
consensus is reached yet about cut-off values correlating 
with implantation [8, 9]. Moreover, as is the case for scor-
ing embryos based on morphological criteria, this often 
results in multiple embryos with the same grade. Our 
models generate endless possibilities and enable a more 
discriminative ranking of embryos resulting from an IVF 

Fig. 4 Illustration of the predicted probability of pregnancy after transfer of embryos originating from 10 patients of clinic A, where a double 
embryo transfer (DET) was performed. Patients were selected according to at least a 30% pregnancy chance predicted by our model A (according 
to morphokinetic parameters and female age), of both embryos. The light blue and dark blue bars represent the individual predicted probability of 
pregnancy after single embryo transfer (SET) for the first and second embryo. The white dots indicate the predicted probability of a twin pregnancy 
after transfer of both embryos originating from one patient; the black dots indicate the predicted probability of a singleton pregnancy after DET. 
Abbreviations: DET, double embryo transfer; SET, single embryo transfer
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or IVF-ICSI treatment by giving each embryo an individ-
ual pregnancy chance.

The development of TLM-based embryo selection algo-
rithms or prediction models in general remains subject 
to selection bias by only including data of IVF treatment 
outcomes of fresh embryo transfers, performed with an 
embryo that was selected as the best embryo by morpho-
logical evaluation. This limitation also applies to our data 
set. All embryo selection models require the assumption 
that the identified morphokinetic characteristics indica-
tive of implantation, also apply to the rest of the embryo 
cohort of this patient. To our knowledge, no data exists 
to support or refute this assumption, as models including 
the treatment outcome of all transferred embryos origi-
nating from one (fresh) treatment cycle are not available. 
Previously published TLM embryo selection models are 
also based on data of fresh embryo transfer combined 
with morphological selection [10–14, 16–18].

A limitation of our study is that we were unable to 
include endocrine indicators of ovarian ageing and 
oocyte quality. In addition, we did not include informa-
tion regarding blastocyst formation since we used mor-
phokinetic data until day 3. A recent study showed that 
a low day 3 cell number was independently associated 
with decreased live birth rate during single blastocyst 
cycles [41]. This demonstrates the association between a 
day 3 variable and live birth and supports the use of mor-
phokinetic parameters of the cleavage divisions for the 
prediction of pregnancy chances. An advantage is that 
the included parameters up until the 5-cell stage can be 
annotated easily and reliably, as evidenced by high ICC’s 
for inter-observer agreement found in our own study, 
but also others [42]. In addition, top ranking embryos 
can already be identified at the 5-cell stage and only cell 
number and morphology at 66–68  h post-fertilization 
needs to be determined to decide which embryo is the 
most likely candidate to implant. If several embryos are 
available with a similar high implantation potential, this 
knowledge can help in the decision to extend culture to 
the blastocyst stage.

However, our prediction models are not yet robust 
enough to use the calculated predictions in clinical prac-
tice. In the past, several prediction models without TLM 
parameters have been developed to predict pregnancy 
outcome, with different predictive values [43–46]. A sys-
tematic review with meta-analysis on this subject con-
cluded that studies that focus on embryo factors that 
are predictive of IVF success are necessary [40]. A much 
larger study than ours developed a TLM embryo selec-
tion algorithm. They showed that their algorithm can 
predict the implantation potential of the embryos with 
an AUC of 0.65 [18]. The AUC’s of our prediction models 
without female age are remarkably lower (0.57 for model 

A and 0.61 for model B). During future research, we aim 
to apply our methods to a larger dataset and with inclu-
sion of more TLM parameters up to the blastocyst stage 
to improve the predictive value. We will also explore the 
inclusion of more TLM parameters up to the blastocyst 
stage to improve the predictive value. If a satisfactory 
predictive value can be achieved, a well-designed pro-
spective validation must first take place, before imple-
menting such a TLM model in clinical practice.

Differences between IVF clinics can result in a failed 
external validation of embryo selection models. In our 
case model B performed less during external validation 
on data of clinic A than the other way around. We inves-
tigated the cause of this and observed the correlation 
between the interval t5-t4 and pregnancy to be differ-
ent for model A and B. Whether this was an explanation 
for the lower performance during external validation of 
model B on clinic A, was tested by developing the mod-
els with a categorical variable for t5-t4. However, exter-
nal validation of these models was not different from the 
original models indicating that differences in t5-t4 were 
not the cause of the lower performance of model B on 
data of clinic A. Model B was not overfit, as evidenced by 
internal validation. Therefore, the only remaining plausi-
ble explanation for the lower performance during exter-
nal validation are procedural differences between the two 
clinics. This may be because of a difference in culture 
conditions and the fertilization method used. Indeed, 
throughout the study period, different culture media and 
oxygen rate were used. Results regarding culture media 
and conditions are conflicting. One study described no 
impact of culture medium on morphokinetics [47] while 
others do [48, 49]. Our developed model A is independ-
ent of fertilization method because only interval data 
remained in the final model; this can be an advantage 
for the reproducibility of the model. In model B, how-
ever, t2 remained in the final model, but here 90% of the 
data included ICSI treatments making differences in t2 
between IVF and ICSI negligible.

Conclusions
Our study demonstrates the use of the EU statistical 
model in predicting pregnancy chances according to 
time-lapse morphokinetics and female age. This sta-
tistical model enables the inclusion of both SET- and 
DET cycles irrespective of the number of implanted 
embryos. Hereby selection bias is minimised. Our pre-
diction models generate continuous pregnancy chances 
and the addition of female age results in predictions 
for an individual couple. With further improvements, 
a potential application of our prediction models is that 
they can aid in the decision between SET or DET, to 
optimize the chance for implantation and reduce the 
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risk of a twin pregnancy. Future research will have to 
clarify if our approach is able to result in a prediction 
model with reliable predictions to be used in clinical 
practice. We believe that our used methods are new in 
the field and add a new perspective to handling the data 
generated by time-lapse incubators.
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