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Abstract 

Study question To construct prediction models based on the Bayesian network (BN) learning method for the prob-
ability of fertilization failure (including low fertilization rate [LRF] and total fertilization failure [TFF]) in assisted repro-
ductive technology (ART) treatment.

Summary answer A BN model was developed to predict TFF/LFR. The model showed relatively high calibration in 
external validation, which could facilitate the identification of risk factors for fertilization disorders and improve the 
efficiency of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment.

What is known already The prediction of TFF/LFR is very complex. Although some studies attempted to construct 
prediction models for TFF/LRF, most of the reported models were based on limited variables and traditional regres-
sion-based models, which are unsuitable for analyzing real-world clinical data. Therefore, none of the reported models 
have been widely used in routine clinical practice. To date, BN modeling analysis is a prominent and increasingly 
popular machine learning method that is powerful in dealing with dynamic and complex real-world data.

Study design, size, duration A retrospective study was performed with 106,640 fresh embryo IVF/ICSI cycles from 
2009 to 2019 in one of China’s largest reproductive health centers.

Participants/materials, setting, methods A total of 106, 640 cycles were included in this study, including 97,102 
controls, 4,339 LFR cases, and 5,199 TFF cases. Twenty-four predictors were initially included, including 13 female-
related variables, five male-related variables, and six variables related to IVF/ICSI treatment. BN modeling analysis with 
tenfold cross-validation was performed to construct the predictive model for TFF/LFR. The receiver operating charac-
teristic (ROC) curves and the corresponding area under the curves (AUCs) were used to evaluate the performance of 
the BN model.

Main results and the role of chance All twenty-four predictors were first organized into seven hierarchical layers 
in a theoretical BN model, according to prior knowledge from previous literature and clinical practice. A machine-
learning BN model was generated based on real-world clinical data, containing a total of eighteen predictors, of 
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which the infertility type, ART method, and number of retrieved oocytes directly influence the probabilities of LFR/
TFF. The prediction accuracy of the BN model was 91.7%. The AUC of the TFF versus control groups was 0.779 (95% CI: 
0.766-0.791), with a sensitivity of 71.2% and specificity of 70.1%; the AUC of of TFF versus LFR groups was 0.807 (95% 
CI: 0.790-0.824), with a sensitivity of 49.0% and specificity of 99.0%.

Limitations, reason for caution First, our study was based on clinical data from a single center, and the results of 
this study should be further verified by external data. In addition, some critical data (e.g., the detailed IVF laboratory 
parameters of the sperm and oocytes used for insemination) were not available in this study, which should be given 
full consideration when further improving the performance of the BN model.

Wider implications of the findings Based on extensive clinical real-world data, we developed a BN model to predict 
the probabilities of fertilization failures in ART, which provides new clues for clinical decision-making support for clini-
cians in formulating personalized treatment plans and further improving ART treatment outcomes.

Study funding/competing interest(s) Dr. Y. Wang was supported by grants from the Beijing Municipal Science & 
Technology Commission (Z191100006619086). We declare that there are no conflicts of interest.

Trial registration number N/A.

Keywords In vitro fertilization, Intracytoplasmic sperm injection, Fertilization failure, Bayesian network, Prediction 
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Introduction
Fertilization is the most crucial step during in vitro fer-
tilization (IVF) and intracytoplasmic sperm injection 
(ICSI) in the field of assisted reproductive technology 
(ART). Fertilization results from complex processes and 
reactions between sperm and oocytes [1, 2]. Any break-
down in this process could lead to fertilization disorders, 
including a low fertilization rate (LFR, defined as a fer-
tilization rate lower than 25%) or even total fertilization 
failure (TFF, defined as no fertilized egg formation and a 
fertilization rate of zero) [3]. The occurrence of an LFR 
ranges from 10 to 20% in IVF, while that of TFF is 10%-
20% in IVF and even 3–5% in ICSI [4, 5]. The TFF/LFR 
could result in the failure of IVF/ICSI treatment, thus 
placing heavy economic and psychological burdens on 
couples undergoing IVF/ICSI cycles.

The prediction of TFF/LFR is very complex. Although 
the laboratory parameters of retrieved sperm and 
oocytes have been proposed to be essential factors in 
the fertilization rate [6, 7], it has been reported that TFF 
can also occur in couples with apparently normal gam-
etes with good quality [8], implying that there might be 
other important factors that affect fertilization. Recently, 
many studies have reported that disrupted genetic and 
epigenetic patterns [9, 10], female age and duration of 
infertility [11], and female hormone levels [12, 13] could 
contribute to the risk of fertilization failure.

Some studies have attempted to develop prediction 
models for the occurrence of fertilization disorders based 
on traditional regression models. One study included 
304 couples with TFF and 304 control couples to develop 
a prediction model for TFF [14], while another study 
included 892 couples to develop a TFF prediction model 

[15]. These reported models are based on minimal sam-
ple sizes and variables, and none have been widely used 
in routine clinical practice [16]. In our previous study, we 
used an extensive clinical database based on IVF medi-
cal records and established a prediction model for TFF/
LFR using multiple logistic regression models [17]. Tra-
ditional regression-based approaches have the following 
features: 1) they model associations rather than causal 
structures; 2) they operate under restrictive assumptions 
about the relationships among variables, and the relation-
ships between predictors cannot be considered; and 3) 
each outcome must be trained on the model and a static 
set of data [18]. These features make the roles of conven-
tional regression-based prediction models quite limited, 
especially for dynamic and complicated clinical data.

Machine learning algorithms for constructing per-
sonalized risk prediction models have been extensively 
developed. The Bayesian network (BN) is one of the most 
widely used machine learning approaches for risk pre-
diction [19]. The structure of a BN model is a directed 
acyclic graph (DAG), where the arcs have a formal inter-
pretation in terms of probabilistic conditional independ-
ence [20]. BN models are powerful for investigating 
dependent relationships among the variables of a domain 
under uncertainty and dealing with real-world data that 
are dynamic and complex [19].

Therefore, we performed a retrospective study based on 
a real-world clinical database that involved 106,640 IVF/
ICSI cycles from 2009 to 2019 in a reproductive center. 
In this study, we aimed to develop a novel BN model with 
better performance. The model accurately and dynami-
cally predicted the possibilities of TFF/LFR by using 
known predictors obtained from clinical practice. This 
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study could provide new clues for clinical decision-mak-
ing support for clinicians in formulating personalized 
treatment plans and further improving the outcomes of 
IVF/ICSI treatment.

Materials and methods
Study population
The retrospective data for this study were collected 
from medical records for IVF/ICSI cycles from 2009 to 
2019 at the Center for Reproductive Medicine, Peking 
University Third Hospital, one of China’s largest repro-
ductive health centers. Detailed information on the 
database is described in our previous publication [17]. 
In total, 149,054 fresh embryo transfer cycles were ini-
tially included in this study. The following cycles were 
excluded: 35 in vitro maturation cycles, 4,299 cycles lack-
ing information on fertilization outcomes, and 38,080 
cycles with missing values for the critical variables. 
Therefore, 106,640 IVF/ICSI cycles were included in the 
subsequent analysis (Fig. 1).

This study was approved by the Ethics Committee of 
Peking University Third Hospital (No. IRB00006761-
M2020004). Informed consent was waived because 
this was a data analysis with no personally identifiable 
information.

Preprocessing of data
Data collection
Based on prior evidence from our previous analysis [21], 
we initially included 24 variables in this study. The vari-
ables were classified into three categories: 1) 13 female-
related variables, including age, body mass index (BMI, 

kg/m2), parity, gravidity, genetic disorders, abnormal 
gestation history, infertility type, ART failure history, 
diminished ovarian reservation (DOR), and infertility 
factors, such as ovulatory disorders, uterine disorders, 
fallopian tube disorders, hyperprolactinemia, and endo-
metriosis. 2) 5 male-related variables, including age, BMI, 
and sperm quality [normal, oligoasthenozoospermia 
(OAZ), severe OAZ, and azoospermia], which was deter-
mined by the WHO laboratory manual for the examina-
tion and processing of human semen, 5th ed. [22]. The 
sperm preparation and measurement methods during 
the duration of the study were consistent. 3) 6 variables 
related to ART treatment, including the controlled ovar-
ian hyperstimulation (COH) protocol, number of oocytes 
retrieved (< 5, 5–20, > 20), antral follicle count (AFC), and 
insemination method (IVF or ICSI). Before constructing 
the model, the predictors were transformed into categor-
ical variables. Detailed information on those variables is 
shown in Supplemental Table 1.

Variable definitions
The outcomes were defined according to the Chinese 
Society of Reproductive Medicine (CSRM) consensus 
on crucial indicators for quality control in ART clini-
cal operation [23]. The fertilization rate (FR) of IVF was 
calculated as (the number of oocytes with two pronu-
clei/the number of all collected oocytes)*100. The FR of 
ICSI was calculated as (the number of oocytes with two 
pronuclei/the number of all collected oocytes in the MII 
period)*100. TFF was defined as a cycle resulting in no 
fertilized oocytes. An LFR was defined as a cycle with an 
FR < 25% [24, 25].

Fig. 1 Flow chart of the cycle selection in this study. LFR: Low fertilization rate; TFF: Total fertilization failure
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Bayesian network model
The database was randomly divided into two data-
sets. Seventy-five percent of the cycles were randomly 
selected as a training dataset and used to construct a BN 
model, while remaining 25% were used as an external test 
dataset.

Bayesian network definition
BNs are classification algorithms based on machine 
learning that can be used to conduct causal reason-
ing and risk prediction analysis. A BN can offer several 
advantages over conventional regression-based methods. 
BNs are graphic representations that include DAGs and 
conditional probability tables (CPTs). A DAG includes 
nodes representing the variables in the network and 
directed edges (depicted as arrows between nodes) repre-
senting associations between the variables. The absence 
of an arrow between a pair of nodes implies independ-
ence between the variables. CPTs describe the direction 
of influence among variables and the degree of influence 
[26].

Variable selection
Predictors were selected based on prior knowledge 
provided by previous studies and the advice of clinical 
experts [17]. Before performing BN analysis, chi-square 
analysis was performed to estimate the potential associa-
tion between each predictor and fertilization disorders, 

which could reduce the total number of variables to avoid 
overfitting the model to the data. As a result, 21 variables 
showed significantly different distributions between the 
control/LFR/TFF groups and were thus included in the 
subsequent BN analysis (Supplemental Table 2).

Structure learning
A theoretical model diagram of the BN model was devel-
oped according to prior knowledge from previous lit-
erature and clinical practice on the association between 
the selected variables experts [21]. As shown in Fig.  2, 
the variables were divided into seven hierarchical lay-
ers. We also provided a blacklist, which refers to a list of 
arcs in the blacklist that are never included in the net-
work (e.g., the genetics factor cannot influence the female 
age. Therefore, the arc from “genetic factor” to “female 
age” is included the blacklist and is never included in the 
network during machine learning). The variables in the 
latter layer cannot influence the variables in the former 
layers, which means that the arcs cannot point from the 
latter layers to the former layers. In addition, female-
related variables are considered not to be adjusted with 
male-related variables. We performed structure learn-
ing based on the Hill Climber Bayes Net method, which 
can add, delete, and reverse edges (arrows) as it searches 
through the feature space and terminates when an opti-
mal model structure is achieved [27]. First, we included 
all 21 variables in BN structure learning model. Then, we 

Fig. 2 Theoretical model diagram of the Bayesian network model. Before the BN structure was established, a theoretical model diagram was 
developed according to prior knowledge from previous literature and clinical practice on the association between the selected variables. The 
variables were divided into seven hierarchical layers and were categorized into three subgroups
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excluded the variables that were not in the DAG or those 
that pointed to fertilization failure and relearned the 
DAG structure. Tenfold cross-validation was performed, 
and each model’s log-likelihood posterior classification 
error was calculated to evaluate the two BN structures. A 
model with a lower log-likelihood posterior classification 
error is considered better.

Performance of the model
The remaining 25% of the cycles were used to evaluate 
the external validity of the models. The BN model was 
assessed by its accuracy, receiver operating character-
istic (ROC) curve, and corresponding area under curve 
(AUC). Accuracy was defined as the sum of true positive 
and true negative instances divided by the total number 
of instances. The ROC curve shows the model sensitiv-
ity and (1-specificity), while the AUC value refers to the 
ability of the risk prediction model to classify research 
objects correctly. The cutoff point of the ROC curve was 
also calculated to obtain the sensitivity and specificity 
of the risk prediction model. Moreover, a decision tree 
model analysis was performed to examine the robustness 
of the BN model.

All statistical tests were two-sided, and a P value < 0.05 
was considered statistically significant. The data analy-
sis in this study was performed using R (version 4.1.0). 
The development and validation of the prediction mod-
els were implemented by using a series of R packages, 
including “BNlearn”, “MASS”, “caret”, “ggplot2”, and 
"pROC", and other R Core Teams.

Results
Characteristics of cycles
Between 2009 and 2019, a total of 149,054 IVF/ICSI 
cycles were included. After excluding 35 in vitro matura-
tion cycles, 4,299 cycles without fertilization information, 
and 38,080 cycles with missing values in key predictor 
variables, 106,640 cycles were included in the final analy-
sis, including 97,102 controls, 4,339 LFR cases, and 5,199 
TFF cases (Fig. 1). The basic characteristics of the cycles 
are shown in Table 1. A total of 34.1% of the cycles were 
older than 35 years old. A total of 59.0% of the cycles did 
not have a history of pregnancy, while 93.1% had no par-
ity. The frequencies of women with a BMI greater than 
or equal to 25, fallopian tube disorders, uterine disor-
ders, hyperprolactinemia, ovulatory disorders, ovarian 
surgery, diminished ovarian function, endometriosis, 
genetic disorders, and and abnormal gestational history 
were 29.8%, 21.4%, 7.5%, 13.1%, 0.3%, 9.7%, 5.5%, 0.9%, 
and 0.9%, respectively. For 4.3% of the cycles, the male 
partners were older than 45  years old. A total of 39.5% 
of the cycles had OAZ or severe OAZ, while 7.3% had 
azoospermia. The frequency of primary infertility was 

54.9%, and the ART failure rate was 34.3%. In 12.6% of 
the cycles, less than five oocytes were retrieved.

Predictor selection
The associations between each predictive variable and 
fertilization disorders were initially explored by the chi-
square test. As Supplemental Table 2 shows, female age 
significantly differed among the groups, and the fre-
quency of an age ≥ 43 was significantly higher in the TFF 
group than in the control group. The frequencies of a his-
tory of uterine disorders, diminished ovarian function 
and endometriosis, natural cycles, an AFC < 5, primary 
infertility, and a male partner age ≥ 45 years were signifi-
cantly higher in the TFF group than in the control group 
(all Ps < 0.05), implying that these variables may be more 
predictive than other variables. In multiple comparisons, 
the frequencies of an LFR did not show a significant dif-
ference between most of these characteristics. In addi-
tion, the frequencies of hyperprolactinemia, ovarian 
surgery, and ejaculation disorders were not significantly 
different among the three groups, so these three predic-
tors were excluded from the subsequent BN analysis.

Bayesian network model
Figure  2 shows the theoretical model diagram of the 
BN model, which was determined by prior knowledge 
[17]. The predictors were divided into three categories: 
female-related, male-related, and treatment-related vari-
ables. The variables were organized into seven hierarchi-
cal layers. Theoretically, the former layer could not be 
causally influenced by the latter layer.

The BN model analysis based on a theoretical diagram 
graph was subsequently performed. Initially, all 21 vari-
ables were included. As Supplemental Figure  1 shows, 
male BMI, a history of abnormal gestations, and uter-
ine disorders were not associated with fertilization fail-
ure. Therefore, we excluded these three variables and 
reconstructed the BN model using the remaining 18 
variables. Tenfold cross-validations showed that the 
BN model including the remaining 18 variables had less 
posterior classification error than the BN model, includ-
ing all predictors (Supplemental Figure  2). The DAG of 
the networks, including only 18 variables, is shown in 
Fig. 3. The directions of arcs refer to the causal relation-
ships, while the thicknesses represent the strength of the 
association between variables. As Fig. 3A depicts, female 
age and genetic disorders influenced several “mediating” 
variables, thus influencing the fertilization rate. Male-
related variables mainly influenced fertilization disorders 
by mediating sperm quality. The number of retrieved 
oocytes, insemination methods, and infertility type could 
directly influence the probability of LFR/TFF. The num-
ber of retrieved oocytes had a stronger association than 
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Table1 Baseline characteristics of the study population

Characteristics Levels Overall (N = 106,640)

N %

Female Age (y) ≤ 29 28,459 26.7

30–34 41,852 39.2

35–37 18,065 16.9

38–40 10,577 9.9

41–42 4118 3.9

≥ 43 3569 3.5

BMI (kg/m2) 18.5–24.0 66,463 62.3

< 18.5 8423 7.9

24.0–28 23,480 22.0

≥ 28 8274 7.8

Gravidity 0 62,692 59.0

1 23,579 22.1

≥ 2 20,099 18.8

Parity 0 99,279 93.1

≥ 1 7361 6.9

Fallopian tube disorders 22,874 21.4

Uterine disorders 8041 7.5

Hyperprolactinemia 424 0.4

Ovulatory disorders 13,917 13.1

Ovarian cyst surgery 305 0.3

Diminished ovarian function 10,312 9.7

Endometriosis 5817 5.5

Genetic disorders 977 0.9

Abnormal gestational history 948 0.9

Male Age (y) ≤ 45 102,106 95.7

> 45 4534 4.3

BMI (kg/m2) < 18.5 1513 1.4

18.5–24.0 37,240 34.9

24.0–28.0 45,187 42.4

≥ 28.0 22,700 21.3

Ejaculatory disorders 149 0.1

Teratozoospermia 4680 4.4

Sperm quality Normal 56,788 53.2

OAZ 38,675 36.3

Severe OAZ 3398 3.2

Azoospermia 7779 7.3
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the other two predictors, implying that this is the most 
predictive variables of TFF. The DAG with proportions of 
each category of variables is shown in Fig. 3B.

The CPT conditional probability table directly point-
ing to fertilization failure was further provided by the 
BN model (Fig.  4A). As Fig.  4B shows, compared with 
a number of retrieved oocytes equal to five or more, 

Table1 (continued)

Characteristics Levels Overall (N = 106,640)

N %

ART Infertility type Primary 58,545 54.9

Secondary 48,095 45.1

ART failure history No 70,040 65.7

Yes 36,600 34.3

Ovulation induction protocol Stimulation cycle 101,349 95.0

Minimal-stimulation cycle 4639 4.4

Natural cycle 652 0.6

Antral follicle count > 12 36,479 34.2

5–12 61,786 57.9

< 5 8337 7.9

Number of oocytes retrieved ≥ 20 15,770 14.8

5–20 77,398 72.6

< 5 13,472 12.6

Insemination method ICSI 47,137 44.2

IVF 59,503 55.8

Fig. 3 Directed acyclic graphs of the Bayesian network model. Abbreviations: “In_” refers to “Infertility factor_”; In_Ovulatory_dis: Infertility factor_
ovulatory disorder; ART_failure: ART failure history; AFC: Antral Follicle Counting; COH: Ovulating induction protocol
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the probability of TFF was higher when the number of 
retrieved oocytes was < 5. Primary infertility showed a 
higher probability of TFF/LFR than secondary infertil-
ity. The IVF-ET insemination method had a higher prob-
ability of TFF/LFR than the ICSI insemination method. 
The probability of TFF reached its highest value of 20.6% 
when a patient had primary infertility, the number of 
retrieved oocytes was less than five and when a patient 
had undergone an IVF cycle.

Validation of the prediction model
The model was validated in the remaining 25% of the 
dataset. As a result, the prediction accuracy of the model 
was 91.3%. The ROC curves and AUCs are depicted in 
Fig.  5. The AUC of the control versus TFF groups was 
0.779 (95% CI: 0.766–0.791), with a sensitivity of 71.2% 
and specificity of 70.1%. The AUC of the control versus 
LFR groups was 0.619 (95% CI: 0.605–0.634), with a sen-
sitivity of 64.9% and specificity of 52.6%. Moreover, the 
AUC of the TFF versus LFR groups was 0.807 (95% CI: 
0.790–0.824), with a sensitivity of 49.0% and specificity of 
99.0%.

Discussion
Fertilization is the most vital step during ART treat-
ment, while failure or low fertilization could directly 
lead to unsuccessful outcomes, even ART treatment fail-
ure. In this study, based on real-world data that includes 
106,640 IVF/ICSI cycles, we, for the first time, report a 

predictive model for IVF-related outcomes (fertilization 
disorders) derived from BN analysis, which is more accu-
rate and flexible for dynamic real-world data than tradi-
tional regression models. The final BN model included 

Fig. 4 Conditional probabilities for node fertilization failure

Fig. 5 Receiver operating characteristic curve of the Bayesian 
network model. The best threshold points and values were shown in 
each curve. The specificities and sensitivities at the threshold point 
were shown in the brackets. LFR: low fertilization rate; TFF: total 
fertilization failure
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nonmodifiable/historical variables (such as female age, 
gravity, parity, and a history of reproductive disease) and 
modifiable variables (such as female BMI, COH methods, 
and insemination methods). The former nonmodifiable 
variables help extrapolate future predictions based on the 
current trajectory, while the latter could help to provide 
clues for decision-making and modifying the protocols 
during ART medical treatment.

Currently, the fields of clinical medicine are undergo-
ing a data revolution. Large volumes of medical records 
are being converted to electronic formats, which leads 
to remarkable growth in the data collected by health 
registries and during clinical studies, thus providing 
opportunities to make risk prediction and intervention 
selection more precise based on “big real-world data”. 
Bayesian statistics have been rapidly developed to solve 
real-world data problems and have now permeated all 
the major areas of medical statistics, including clinical 
trials, epidemiology, predictive modeling, and decision-
making [28]. BN analysis could provide a natural way to 
represent the uncertainties involved in medicine when 
dealing with diagnosis, treatment selection, planning, 
and prognosis prediction [19]. Recently, various studies 
have reported BN-based predictive models and decision 
support systems in the medical field. One study derived 
a new Bayesian network-based risk stratification model 
for the prediction of short-term and long-term mortal-
ity in patients with left ventricular assist devices, with 
accuracies of 95%, 90%, 90%, 83%, and 78%, and ROCs 
of 91%, 82%, 82%, 80% and 81% respectively at each end-
points postimplantation (30 day, 90 day, 6 months, 1 year, 
and 2 years), which were higher than those of traditional 
conventional predictive models [27]. A study performed 
a BN analysis of the probabilistic relationships between 
various obesity phenotypes and cardiovascular disease 
risk based on 6276 individuals within the Chinese popu-
lation and showed that the probability of cardiovascular 
disease risk was influenced by age and sex [17]. Bayesian 
network structures have also been developed and vali-
dated to predict tumor risk, recurrence, and survival [29]. 
These previous studies indicate that Bayesian models 
can reliably represent the complex causal relationships 
of multiple variables with clinical outcomes. However, 
the BN model has not yet been used in the field of repro-
ductive health. Moreover, although some studies have 
reported predictive models for fertilization disorders 
based on traditional statistical analysis, no model has 
been widely used in clinical practice [16]. One European 
study reported that the number of retrieved oocytes, 
female smoking, and nontubal factor infertility were pre-
dictors of TFF [14]. Another study reported that male 
age, the number of IVF cycles, the indication for IVF, and 
the prewash total motile sperm count were predictors 

for TFF with an AUC of 0.75 [15]. Our previous study 
developed a traditional logistic analysis-based predictive 
model for TFF/LFR based on clinical variables. The AUC 
for the TFF group was 0.743 (95% CI: 0.729–0.757), with 
a sensitivity of 66.1% and specificity of 70.3% [21].

We reported a BN predictive model for fertilization 
failure in the present study. The AUC for the TFF group 
using the BN model was 0.779 (95% CI: 0.766–0.791), 
which was higher than that in previous studies. The sen-
sitivity and specificity of the BN model for the TFF group 
were 71.2% and 70.1%, respectively. The sensitivity was 
higher than that of the traditional model, implying that 
the model could distinguish TFF cases from controls 
more easily and sensitively. Notably, the AUC of the TFF 
versus LFR groups in this study reached 0.807 (95% CI: 
0.790–0.824), indicating that this BN model had good 
performance in distinguishing TFF from LFR, which 
could help clinicians identify patients who may have TFF 
from those with a LFR. The BN model identified three 
key variables, including infertility type, insemination 
method, and the number of oocytes retrieved, that were 
the most crucial predictors for TFF/LRF and directly 
impacted the probability of fertilization disorders. For a 
couple diagnosed with primary infertility, and less than 
5 retrieved oocytes (nonmodified variables), the prob-
ability for TFF was 20.6% when they underwent IVF-
ET insemination. Nevertheless, the probability could 
decrease to 14.9% when they undergo ICSI. This model 
is meaningful in assisting clinicians in a “step-by-step” 
manner to modify their detailed protocols to decrease 
the probability of TFF.

Most traditional regression-based models can only 
show how each variable relates to the outcomes. Never-
theless, these models do not perform well in determining 
the predictors’ interactions. In contrast to traditional sta-
tistical methods, which comprise weighted combinations 
of independent variables, BNs provide the advantages of 
a rigorous probabilistic framework to perform inference 
for multiple variables and an intuitive representation that 
clinicians can easily interpret. In this study, we found 
that although several variables did not show direct asso-
ciations with fertilization failure, they could influence 
other vital variables and form complex networks, thus 
affecting fertilization failure. For example, in the current 
BN model, female age could influence factors such as 
the AFC, BMI, parity, gravidity, and female disease his-
tory. These variables further influenced the key variables, 
such as the number of retrieved oocytes and insemina-
tion methods during treatment, thus contributing to the 
probability of fertilization failures. The “step-by-step” 
network provides a more accurate and detailed descrip-
tion and improves the performance of the patient deci-
sion-making process compared to the “black-box” risk 
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scores, which can only take limited numbers of variables 
into account and have difficulty representing the com-
plexity of the occurrence of LFR/TFF.

Missing information for several variables frequently 
occurs among patient records, and traditional regres-
sion-based models do not solve this problem. BN models 
can intuitively present relationships between predictors, 
evaluate potential possibilities for outcomes layer by 
layer based on some given predictors, fill missing values 
and solve “uncertainties” by calculating conditional pos-
sibilities based on a parent node. Therefore, BN models 
have already been translated into clinical practice [30, 
31]. For example, the Pittsburgh Cervical Cancer Screen-
ing Model, a dynamic Bayesian network assessing the 
risk of cervical precancer and invasive cancer, has been 
established. It was constructed based on expert knowl-
edge and follow-up data collected over 13 years [32]. BN 
models also performed better in diagnosing dementia, 
AD, and mild cognitive impairment (MCI) compared to 
most other well-known classifiers/models [31]. There-
fore, based on the BN model validated in this study, we 
plan to develop an online application available to clini-
cians and patients, that could easily interpret the predic-
tors and key decision points of fertilization failure along 
the continuum of a patient’s clinical course. The applica-
tion will be integrated with electronic health records to 
compute patients’ probabilities of TFF/LFR based on the 
most current clinical data available. An additional fea-
ture will allow reproductive clinicians to customize the 
decision support tool according to each patient’s unique 
conditions.

Some limitations need to be addressed before any 
potential extrapolation of the findings. First, our study 
was based on a single-center analysis. Although this 
center is one of the largest reproductive health cent-
ers in China, serving infertile couples from all 31 prov-
inces in China, the BN model constructed by using the 
single-center clinical data in this study should be further 
verified by external data. Second, since our data were 
automatically extracted from the computer-based patient 
record system, the detailed IVF laboratory parameters of 
sperm and oocytes used for insemination were unavail-
able; thus, the impact of sperm and oocyte parameters 
on fertilization outcomes was not evaluated in this study. 
Third, based on the center’s data sharing & access regu-
lations, any personally identifiable information (such as 
name and ID card) should be excluded from the dataset 
used for scientific research. So, we could only obtain data 
based on IVF cycles. The data used in this study were per 
cycle, not per couple or patient, so the BN model might 
not apply to patients with recurrent fertilization disor-
ders. Further research is needed to explore such predic-
tive factors or models for chronic fertilization disorders 

and consider the influence of repeated measurement 
and recurrent fertilization disorders. Fourth, since most 
of the predictors used in this study were known factors, 
we did not provide new predictors for TFF/LFR. How-
ever, the primary purpose of our study was to develop 
a predictive model with better performance and fit for 
real-world data based on known clinical factors rather 
than to capture new risk factors for TFF/LFR. Fifth, 
rather than giving a specific cutoff value as in traditional 
regression models, in the BN model, the decision-making 
meant that we could compare possibilities of TFF/LFR 
in different protocols and then choose the optimal pro-
tocol with the lowest predicted probability of TFF/LFR. 
Finally, the BN model performed well in distingguish-
ing TFF patients from LFR patients and controls. Iden-
tifying TFF patients is of great concern for clinicians and 
embryologists. However, the model did not perform as 
well in distinguishing LFR from controls. Therefore, the 
BN model should be further optimized to better distin-
guish LFR group from controls by using more sensitive 
predictors in further research. In addition, we deleted 
cycles with missing values rather than filling the missing 
values by using some statistical approaches. However, we 
compared distributions of the critical variables between 
excluded (incomplete data) and included (complete data) 
data. The frequencies of key variables such as the age of 
the partners, number of retrieved oocytes, insemination 
method, and infertility type, which directly influenced 
fertilization in the BN model, were comparable between 
the included and excluded cycles. This implies that the 
missing data were likely to be missing at random, and 
deleting these missing values may not have introduced 
much bias (Supplementary Table 3).

Conclusion
In conclusion, in this study, we developed a predictive 
model based on the BN learning method and revealed 
that several clinical factors could form a network, thus 
indirectly or directly influencing the occurrence of LFR/
TFF. The insemination method, infertility type, and num-
ber of retrieved oocytes were direct predictors of TFF/
LFR. The BN model provided relatively good perfor-
mance in distinguishing the TFF group from controls and 
LFR groups, but the performance in distinguishing the 
LFR group from controls needs improvement. The model 
could be used to build clinical decision support systems 
to predict fertilization disorders and further provide new 
evidence for the power of the BN model and its wider use 
in modeling and the analysis of medical data, especially 
when the analysis concerns areas of diagnostic or prog-
nostic uncertainty and a sizeable number of variables are 
involved in the process.



Page 11 of 12Tian et al. Reproductive Biology and Endocrinology            (2023) 21:8  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12958- 023- 01065-x.

Additional file 1: Table S1. The information of involved variables. 
Table S2. Predictor selection. Table S3. Comparison between included 
and excluded data. Figure S1. Bayesian Network model based on all 
predictors. Figure S2. Tenfold ten-cross validation. 

Authors’ contributions
Q.J and W.Y conceived and designed the study. T.T analyzed the data and 
drafted the manuscript. H.Y and Z.Y provided advice on the statistical analysis. 
L.R, Y.R, L.X, L.Q, H.Y, and K.F participated in the revision process and approved 
this submission for publication. The author(s) read and approved the final 
manuscript.

Funding
Dr. Y. Wang was supported by grants from Beijing Municipal Science & Tech-
nology Commission (Z191100006619086).

Availability of data and materials
The data underlying this article will be shared upon reasonable request to the 
corresponding author.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of Peking University Third 
Hospital (No. IRB00006761-M2020004). Informed consent was waived because 
this was a data analysis with no personally identifiable information.

Competing interests
There is no conflict of interest.

Author details
1 Center for Reproductive Medicine, Department of Obstetrics and Gynecol-
ogy, Peking University Third Hospital, Beijing, China. 2 National Clinical Research 
Center for Obstetrics and Gynecology (Peking University, Third Hospital), 
Beijing, China. 3 Key Laboratory of Assisted Reproduction (Peking University), 
Ministry of Education, Beijing, China. 4 Beijing Key Laboratory of Reproductive 
Endocrinology and Assisted Reproductive Technology (Peking University Third 
Hospital), Beijing, China. 5 School of Mathematical Sciences, LMAM, LMEQF, 
and Center of Statistical Science, Peking University, Beijing, China. 6 School 
of Public Health, Peking University, Beijing, China. 7 Beijing Advanced Innova-
tion Center for Genomics, Beijing, China. 8 Peking-Tsinghua Center for Life 
Sciences, Peking University, Beijing, China. 

Received: 10 October 2022   Accepted: 19 January 2023

References
 1. Evans JP. Sperm-egg interaction. Annu Rev Physiol. 2012;74:477–502.
 2. Okabe M. Sperm-egg interaction and fertilization: past, present, and 

future. Biol Reprod. 2018;99:134–46.
 3. van der Westerlaken L, Helmerhorst F, Dieben S, Naaktgeboren N. Intracy-

toplasmic sperm injection as a treatment for unexplained total fertiliza-
tion failure or low fertilization after conventional in vitro fertilization. Fertil 
Steril. 2005;83:612–7.

 4. Esfandiari N, Javed MH, Gotlieb L, Casper RF. Complete failed fertilization 
after intracytoplasmic sperm injection–analysis of 10 years’ data. Int J 
Fertil Womens Med. 2005;50:187–92.

 5. Lee SH, Lee JH, Park YS, Yang KM, Lim CK. Comparison of clinical out-
comes between in vitro fertilization (IVF) and intracytoplasmic sperm 
injection (ICSI) in IVF-ICSI split insemination cycles. Clin Exp Reprod Med. 
2017;44:96–104.

 6. Harris AL, Vanegas JC, Hariton E, Bortoletto P, Palmor M, Humphries LA, 
Tanrikut C, Chavarro JE, Styer AK. Semen parameters on the day of oocyte 
retrieval predict low fertilization during conventional insemination IVF 
cycles. J Assist Reprod Genet. 2019;36:291–8.

 7. Zhu J, Jiang H, He RB, Yin HQ, Wang CL, Li Y, Du X. Association between 
etiologic factors in infertile couples and fertilization failure in conven-
tional in vitro fertilization cycles. Andrology. 2015;3:717–22.

 8. Sarikaya E, Eryilmaz OG, Deveer R, Dogan M, Mollamahmutoglu L. Analy-
sis of 232 total fertilization failure cycles during intracytoplasmic sperm 
injection. Iran J Reprod Med. 2011;9:105–12.

 9. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene 
pattern in patients with repeated in vitro fertilization (IVF) failure. Hum 
Reprod. 2009;24:2541–8.

 10. Litzky JF, Marsit CJ. Epigenetically regulated imprinted gene expression 
associated with IVF and infertility: possible influence of prenatal stress 
and depression. J Assist Reprod Genet. 2019;36:1299–313.

 11. Ashkenazi J, Orvieto R, Gold-Deutch R, Feldberg D, Dicker D, Voliovitch 
I, Ben-Rafael Z. The impact of woman’s age and sperm parameters 
on fertilization rates in IVF cycles. Eur J Obstet Gynecol Reprod Biol. 
1996;66:155–9.

 12. Lekamge DN, Barry M, Kolo M, Lane M, Gilchrist RB, Tremellen KP. Anti-
Mullerian hormone as a predictor of IVF outcome. Reprod Biomed Online. 
2007;14:602–10.

 13. Rosen MP, Shen S, Rinaudo PF, Huddleston HG, McCulloch CE, Cedars MI. 
Fertilization rate is an independent predictor of implantation rate. Fertil 
Steril. 2010;94:1328–33.

 14. Krog M, Prior M, Carlsen E, Loft A, Forman J, Pinborg A, Andersen AN. 
Fertilization failure after IVF in 304 couples–a case-control study on 
predictors and long-term prognosis. Eur J Obstet Gynecol Reprod Biol. 
2015;184:32–7.

 15. Henkel R, MA G, Bodeker RH, Scheibelhut C, Stalf T, Mehnert C, Schuppe 
HC, Jung A, Schill WB. Sperm function and assisted reproduction technol-
ogy Reprod. Med Biol. 2005;4:7–30.

 16. Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic 
review of the quality of clinical prediction models in in vitro fertilisation. 
Hum Reprod. 2020;35:100–16.

 17. Tian S, Bi M, Bi Y, Che X, Liu Y. A Bayesian Network Analysis of the 
Probabilistic Relationships Between Various Obesity Phenotypes and 
Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based 
Observational Study. JMIR Med Inform. 2022;10:e33026.

 18. Tangri N, Inker L, Levey AS. A systematic review finds prediction models 
for chronic kidney disease were poorly reported and often developed 
using inappropriate methods. J Clin Epidemiol. 2013;66:697.

 19. Arora P, Boyne D, Slater JJ, Gupta A, Brenner DR, Druzdzel MJ. Bayesian 
Networks for Risk Prediction Using Real-World Data: A Tool for Precision 
Medicine. Value Health. 2019;22:439–45.

 20. Bielza C, Larranaga P. Bayesian networks in neuroscience: a survey. Front 
Comput Neurosci. 2014;8:131.

 21. Tian T, Chen L, Yang R, Long X, Li Q, Hao Y, et al. Prediction of Fertilization 
Disorders in the In Vitro Fertilization/Intracytoplasmic Sperm Injection: 
A Retrospective Study of 106,728 Treatment Cycles. Front Endocrinol 
(Lausanne). 2022;13:870708.

 22. Sanchez-Alvarez J, Cano-Corres R, Fuentes-Arderiu X. A Complement 
for the WHO Laboratory Manual for the Examination and Processing of 
Human Semen (First Edition, 2010). EJIFCC. 2012;23:103–6.

 23. Hu L HG, Sun H, Fan L, Feng Y, Shen H, et al. CSRM consensus on key 
indicators for quality control in ART clinical operation. J Reprod Med 
.2018;13:828–35.

 24. Lensen SF, Wilkinson J, Leijdekkers JA, La Marca A, Mol BWJ, Marjoribanks 
J, Torrance H, Broekmans FJ. Individualised gonadotropin dose selection 
using markers of ovarian reserve for women undergoing in vitro fertilisa-
tion plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database 
Syst Rev. 2018;2:CD012693.

 25. Tang L, Rao M, Yang W, Yao Y, Luo Q, Lu L, Wang L, Zhao S. Predictive value 
of the sperm DNA fragmentation index for low or failed IVF fertilization in 
men with mild-to-moderate asthenozoospermia. J Gynecol Obstet Hum 
Reprod. 2021;50:101868.

 26. Nistal-Nuno B. Tutorial of the probabilistic methods Bayesian net-
works and influence diagrams applied to medicine. J Evid Based Med. 
2018;11:112–24.

https://doi.org/10.1186/s12958-023-01065-x
https://doi.org/10.1186/s12958-023-01065-x


Page 12 of 12Tian et al. Reproductive Biology and Endocrinology            (2023) 21:8 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 27. Loghmanpour NA, Kanwar MK, Druzdzel MJ, Benza RL, Murali S, Antaki JF. 
A new Bayesian network-based risk stratification model for prediction of 
short-term and long-term LVAD mortality. ASAIO J. 2015;61:313–23.

 28. Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med. 
2006;25:3589–631.

 29. Osong B, Masciocchi C, Damiani A, Bermejo I, Meldolesi E, Chiloiro G, Ber-
bee M, Lee SH, Dekker A, Valentini V, et al. Bayesian network structure for 
predicting local tumor recurrence in rectal cancer patients treated with 
neoadjuvant chemoradiation followed by surgery. Phys Imaging Radiat 
Oncol. 2022;22:1–7.

 30. Onisko A, Druzdzel MJ, Austin RM. Application of Bayesian network mod-
eling to pathology informatics. Diagn Cytopathol. 2019;47:41–7.

 31. Seixas FL, Zadrozny B, Laks J, Conci A, Muchaluat Saade DC. A Bayes-
ian network decision model for supporting the diagnosis of dementia, 
Alzheimers disease and mild cognitive impairment. Comput Biol Med. 
2014;51:140–58.

 32. Austin RM, Onisko A, Druzdzel MJ. The Pittsburgh Cervical Cancer Screen-
ing Model: a risk assessment tool. Arch Pathol Lab Med. 2010;134:744–50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A Bayesian network model for prediction of low or failed fertilization in assisted reproductive technology based on a large clinical real-world data
	Abstract 
	Study question 
	Summary answer 
	What is known already 
	Study design, size, duration 
	Participantsmaterials, setting, methods 
	Main results and the role of chance 
	Limitations, reason for caution 
	Wider implications of the findings 
	Study fundingcompeting interest(s) 
	Trial registration number 

	Introduction
	Materials and methods
	Study population
	Preprocessing of data
	Data collection
	Variable definitions

	Bayesian network model
	Bayesian network definition
	Variable selection
	Structure learning

	Performance of the model

	Results
	Characteristics of cycles
	Predictor selection
	Bayesian network model
	Validation of the prediction model

	Discussion
	Conclusion
	References


