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Abstract 

Introduction Infertility affects one in every six couples in developed countries, and approximately 50% is of male ori-
gin. In 2021, sperm DNA fragmentation (SDF) testing became an evidence-based test for fertility evaluations depict-
ing fertility more clearly than standard semen parameters. Therefore, we aimed to summarize the potential prognostic 
factors of a higher SDF.

Methods We conducted a systematic search in three medical databases and included studies investigating any risk 
factors for SDF values. We calculated mean differences (MD) in SDF with 95% confidence interval (CI) for exposed and 
non-exposed individuals.

Results We included 190 studies in our analysis. In the group of associated health conditions, varicocele 
(MD = 13.62%, CI: 9.39–17.84) and impaired glucose tolerance (MD = 13.75%, CI: 6.99–20.51) had the most significant 
increase in SDF. Among malignancies, testicular tumors had the highest impact, with a maximum of MD = 11.3% 
(CI: 7.84–14.76). Among infections, the overall effects of both Chlamydia and HPV were negligible. Of lifestyle factors, 
smoking had the most disruptive effect on SDF – an increase of 9.19% (CI: 4.33–14.06). Different periods of sexual 
abstinence did not show significant variations in SDF values. Age seemed to have a more drastic effect on SDF from 
age 50 onwards, with a mean difference of 12.58% (CI: 7.31–17.86). Pollution also had a detrimental effect – 9.68% (CI: 
6.85–12.52).

Conclusion Of the above risk factors, varicocele, impaired glucose tolerance, testicular tumors, smoking, pollution, 
and paternal age of over 50 were associated with the highest SDF.
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Introduction
Fertility rates are declining in western developed coun-
tries; currently, approximately 15% of couples are infer-
tile [1]. The World Health Organization (WHO) defines 
infertility as regular unprotected sexual intercourse 
without achieving conception within a year [2]. The 
reason could be multifactorial. However, the male pro-
portion accounts for approximately 50%, and despite 
a substantial decrease of idiopathic cases in the past 
years, 30–40% are still of unknown origin [3]. Further-
more, sperm concentration, morphology, and semen 
volume have all been shown to have deteriorated dras-
tically over the past decades [4].

In recent years, there has been a growing demand 
for functional, objective parameters reflecting fertil-
ity status more clearly than classical parameters. Of 
these, sperm DNA fragmentation (SDF) and the DNA 
fragmentation index (DFI) – denoting the percentage 
of sperm with damaged DNA – seem to be of utmost 
importance [5]. In 2021, it became the first evidence-
based test to be included in the international guideline 
[6]. However, there is no consensus on how to distin-
guish between fertile and infertile males based on 
SDF values [7]. DNA integrity is required for fertiliza-
tion, and the normal development of the embryo [8]. 
Accordingly, it has been known that infertile men have 
more sperm with damaged DNA than fertile men [9]. 
On the other hand, high SDF is associated with reduced 
chances of natural conception, increased failure rates of 
assisted reproduction, and miscarriages [10, 11].

DNA breaks occur both physiologically and patho-
logically during the development and maturation of 
sperm cells [12]. Several factors have been shown to be 
risk factors for a high SDF. However, the results range 
widely. For example, obesity was associated with an 
increase of 3.41% in SDF compared to normal body 
mass index (BMI), whereas the presence of varicocele 
was associated with a 9.84% increase [9, 13]. Identify-
ing potentially modifiable risk factors for high SDF may 
ultimately lead to more satisfactory and cost-effective 
approaches to optimizing fertility, such as lifestyle 
modifications.

Therefore, we aimed to conduct a systematic review 
and meta-analysis on all risk factors that have been inves-
tigated as potentially increasing SDF.

Methods
Our systematic review and meta-analysis are reported 
based on the recommendation of the PRISMA 2020 
guideline (see Supplementary Table  1), and we fol-
lowed the Cochrane Handbook [14, 15]. Furthermore, 
the study protocol was registered on PROSPERO with 

the registration number CRD42021282533, and we fully 
adhered to it.

Eligibility criteria
We formulated our question using the PICO framework. 
Eligible studies included all male patients, regardless of 
their fertility status (P), and compared the SDF values 
(O) between groups with and without a particular risk 
factor (I and C). Risk factors included all lifestyle-, envi-
ronmental-, and additional health factors. For the out-
come measures, all sperm DNA fragmentation assays 
were included (e.g., sperm chromatin structure assay 
(SCSA), terminal deoxynucleotidyl transferase (dUTP), 
nick end labeling (TUNEL), sperm chromatin dispersion 
test (SCD), Comet assay, both neutral and alkaline). Eli-
gible studies reported either the SDF difference between 
the groups with and without the risk factors in terms of 
mean difference (MD) or the rate of high SDF based on 
a specific cut-off value for each group. A change in SDF 
was considered clinically significant if it was around 10%, 
but SDF values were interpreted on a consensus basis, as 
there are no guideline recommendations that we could 
have followed.

Cohort studies of both prospective and retrospective 
designs were eligible. No studies were excluded on the 
basis of language criteria.

We excluded studies (1) with inaccurate data or if data 
were presented in a way that could not be further pro-
cessed, (2) conference abstracts, (3) reviews, case series, 
and case reports.

Information sources and search strategy
Our systematic search was conducted in Embase, MED-
LINE (via PubMed), and Cochrane Central Register of 
Controlled Trials (CENTRAL) on October 17, 2021. Dur-
ing the systematic search, we used the following search 
key: (“sperm DNA fragmentation” OR “SDF” OR “DNA 
fragmentation index” OR “DFI”). We did not use filters or 
other restrictions.

Selection process
Endnote v9.0 (Clarivate Analytics, Philadelphia, PA, 
USA) reference manager software was used for the selec-
tion. After automatic and manual duplicate removal, 
the selection was preformed in pairs by four independ-
ent review authors for the two halves of the articles (JÁ-
AF and TF-AS) at the level of title, abstract, and full text 
level of the references. Disagreements were resolved at 
each level by a third review author for each group (NÁ 
and TS). The Cohen’s kappa coefficient (κ) was calculated 
after each step to measure interrater reliability [16].
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Data collection process and data items
Data from the eligible articles were collected by two 
authors (AS and JÁ) into a predefined data collection 
table. We extracted the following data: first author, year 
of publication, study design and period, number of par-
ticipants and demographical data, fertility status, risk 
factors and groupings, SDF assay type, cut-off values for 
dichotomous outcomes, MD values with distribution of 
risk factor groups or high SDF in the risk factor groups, 
pregnancy or birth as additional outcomes in terms of 
either the risk factor or SDF, and information for assess-
ing the risk of bias in the studies.

The original study investigator was contacted when 
data were missing or insufficient.

Wherever possible, we grouped participants in the 
selected studies by general population, fertility clinic, fer-
tile, or a combination of these based on the fertility status 
of patients. Studies reporting similar SDF cut-off values 
were handled in the same group.

The preferred data format for SDF was the mean with 
standard deviation (SD). Therefore, data reported as 
median were approximated by the interquartile range 
to mean with SD based on the work by Wan et al. [17]. 
When we had more than one treatment group per study, 
we pooled these groups following the recommendation 
of the Cochrane handbook [15].

For sexual abstinence, we used as a reference the num-
ber of abstinence days recommended when examin-
ing standard semen parameters (2–7  days, 2–5  days, or 
3–5 days). As these repeated measurement studies lacked 
SD of changes from baseline, we used a conservative 
approach and assumed a correlation of minus one to cal-
culate the SD of changes, which is equivalent to the sum 
of the SDs.

Study risk of bias assessment
Two review authors (SV and HP) performed the risk of 
bias assessment independently using the Quality in Prog-
nostic Studies (QUIPS) tool [18]. Risk assessment catego-
ries were predetermined for each aspect (Supplementary 
Appendix). A third review author resolved disagreements 
(PN).

Synthesis methods
All statistical analyses were performed with R (R Core 
Team 2022, v4.2) using the meta (v5.5.0) and dmetar 
(v0.0.9) packages [19].

The random-effects model was used with the inverse 
variance method for weighting and the Mantel–Haenszel 
method to pool odds ratio (OR) with a 95% confidence 
interval (CI) from 2 by 2 tables (risk factor yes/ no, SDF 
above and below cut-off) and models with restricted 

maximum likelihood method to calculate MD with 
95%CI from mean values (mean SDF in groups with and 
without risk factor) [20].

Forest plots were used to graphically summarize the 
results irrespective of the number of studies included in 
the pooled analysis. Forest plots with fewer than three 
studies were interpreted with limitations.

Where applicable, we reported the prediction intervals 
(i.e., the expected range of effects of future studies) of 
results following the recommendations of IntHout et al. 
[21].

The Cochrane’s Q test was used to assess statistical het-
erogeneity with a p-value < 0.1 as a threshold for a statis-
tically significant difference, and the I2 index was used 
to quantify between-study heterogeneity. In addition, 
Egger’s test and funnel plots were applied to report and 
visualize publication bias when at least ten studies were 
involved in the analysis.

Besides heterogeneity, a p-value < 0.05 was considered 
statistically significant.

A subgroup analysis was carried out based on the fertil-
ity status of the population and the SDF assay used.

Results
Search and selection
Altogether, we found 26,901 articles using our search key, 
of which 190 were used for the meta-analysis or the sys-
tematic review (Fig. 1).

Basic characteristics of included studies and summary 
of results
Baseline characteristics of the included analyses are 
detailed in Supplementary Table  2. The earliest studies 
were published in 2003, and the latest in 2021. The most 
common study location was Europe, closely followed by 
America and Asia. Fewer were from Africa, and the few-
est studies were from Australia. Most articles were ret-
rospective and mainly included male patients in their 
30  s attending fertility clinics. The most frequently ana-
lyzed risk factor was the presence of varicocele, and the 
measurement of SDF was performed primarily via SCSA, 
SCD, or TUNEL assays. The eligibility criteria for each 
study are summarized in Supplementary Table  3. The 
studied risk factors of each article, risk factor definitions, 
and the definitions of fertility statuses are included in 
Supplementary Table  4. The main findings on pregnan-
cies or births, and their connection to SDF are included 
in Supplementary Table 6.

Risk factors – associated health conditions
We summarized risk factors with only one or two sources 
in Supplementary Figs. 46–48. Subgroups by fertility sta-
tus and assay type used to measure SDF and results based 
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on SDF cut-off values are summarized in the Supplemen-
tary material.

Pooled SDF values for associated health conditions 
are summarized in Fig.  2 (see individual plots in the 
Supplementary Material). Regardless of the assay used, 
the presence of varicocele increased SDF by over 10% 
(MD = 13.62, CI: 9.39–17.84). The subgroup analysis by 
palpable and non-palpable varicocele yielded a smaller 

MD (= 7.95%, CI: 3.93–11.97) with a maximum of 
MD = 11.32% (CI: 3.47–19.17) when measured via SCSA.

Patients with impaired glucose tolerance showed a 
higher SDF than those with normal glucose tolerance 
(MD = 13.75, CI: 6.99–20.51).

For malignancies, testicular tumors had both statisti-
cally and clinically significant effects on SDF, with a max-
imum of MD = 11.3% (CI: 7.84–14.76) when measured 

Fig. 1 PRISMA 2020 flowchart showing the study selection process

Fig. 2 Summary forest plot of associated health conditions
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by SCD. The presence of Hodgkin’s lymphoma was sta-
tistically significant but not clinically (MD = 3.65%, CI: 
0.71–6.58). Lymphomas generally resulted in a higher 
SDF than those without (MD = 5.19%, CI: 1.45–8.93). 
The presence of non-Hodgkin’s lymphoma and leukemias 
did not reach statistical significance.

As for infections, the mean difference for Chlamydia 
was not significant, either statistically or clinically. The 
presence of human papillomavirus (HPV) did not result 
in a higher SDF either and in general, viral infections 
had a negligible effect (MD = 2.36, CI: -0.82–5.54). How-
ever, the presence of bacterial infections (MD = 8.98, 
CI: 2.45–15.52) or sexually transmitted infections (STIs) 
(MD = 5.54%, CI: -0.18–11.26) yielded ambiguous 
results.

Risk factors – lifestyle factors
Results are summarized in Fig. 3. Smoking increased DFI 
(MD = 9.19%, CI: 4.33—14.06) compared to non-smok-
ers. However, smoking showed a dose-dependency. In 
comparison to non-smokers, light smokers (MD = 2.93%, 
CI: -1.30–7.15) had a lower increase than heavy smokers 

(MD = 9.60%, CI: 3.80–15.40). Alcohol consumers had 
a higher SDF (MD = 1.88, CI: -1.93–5.69). However, the 
difference was clinically non-significant. On the other 
hand, comparing moderate (MD = 0.86%, CI: -2.43–4.15) 
and heavy drinkers (MD = 2.92%, CI: -2.51–8.34) to 
abstainers also resulted in a non-significant difference.

Overweight or obese patients had similar SDF values 
as those with normal BMI (MD = 0.88%, CI: -1.73–3.49). 
Underweight men showed a slightly lower SDF than 
patients with normal BMI (MD = -1.54, CI: -3.08–0.01). 
However, the difference was non-significant.

Abstinence for none of the generally recommended 
days seemed to result in clinically lower SDF compared 
to longer or shorter periods when results were compared 
for the same population or different patients.

Risk factors – other risk factors
A summary of other risk factors is showing in Fig. 4. We 
compared multiple age groups to determine the optimal 
age for the lowest SDF. A clinically significant increase 
in SDF was seen in men over 50 (MD = 12.58%, CI: 7.31- 
17.86) compared to those below.

Fig. 3 Summary forest plot of lifestyle factors

Fig. 4 Summary forest plot of other factors
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Exposure to different pollutants significantly increased 
SDF (MD = 9.68%, CI: 6.85–12.52). However, the type of 
pollutants was heterogeneous. On the other hand, expo-
sure to pesticides or insecticides significantly increased 
SDF (MD = 6.02%, CI: 3.66–8.38).

The pooled results of studies measuring reactive oxy-
gen species (ROS) showed a higher SDF for higher ROS 
values (MD = 6.10%, CI: 4.65–7.55).

Risk factors with a more significant impact on SDF in 
the systematic review were spinal cord injuries in two 
studies (MD = 60.8%, CI: 53.94–67.66 and MD = 49.8%, 
CI: 35.66–63.94) and heroin use (MD = 31.79%, CI: 
29.09–34.49). The effects of chronic prostatitis and previ-
ous orchidopexy also seem to be significant risk factors 
for urology, with a MD value of around 10% increase in 
SDF in the presence of the risk present.

Risk of bias assessment
The results of the risk of bias assessment are presented in 
Supplementary Table 5. For study participation, the risk 
of bias was mainly low, whereas study attrition did not 
apply in most studies due to their retrospective nature. 
Next, we evaluated risk factor measurement, which was 
mainly of low risk of bias, similarly to outcome measure-
ment. Finally, study confounding was of the highest risk 
of bias.

Publication bias and heterogeneity
Egger’s test could only be performed for varicocele and 
age based on SDF cut-off values. Their p-values were 
0.548 and 0.405, respectively.

Heterogeneity was high for almost every risk fac-
tor examined due to the heterogeneity in risk factor 
definitions.

Discussion
This comprehensive meta-analysis provides a thorough 
summary of all potential risk factors of SDF that have 
been assessed to date. In addition, wherever possible, 
we performed subgroup analyses based on the severity 
or the quantity of exposure to the risk factor, the assay 
method used for measurement, and fertility status.

Although many studies have focused on the risk fac-
tors for standard semen parameters, much fewer data 
are available on the risk factors for SDF and even less, 
in turn, for pregnancy and birth outcomes in terms of 
SDF. Our study showed that several modifiable risk fac-
tors affect SDF notably. Amongst health conditions, 
varicocele and impaired glucose tolerance were found to 
have the strongest negative effect on SDF. With regard 
to infections, only a few studies are available that inves-
tigate the relationship between a specific pathogen and 
SDF. One of them was HPV, for which the literature is 

ambiguous, and the other one was Chlamydia, which 
had a higher effect on SDF [22]. Of malignancies, the 
presence of testicular tumors had the largest impact on 
SDF. Regardless of the type of malignancy, fertility coun-
seling and preservation must always be offered prior to 
the initiation of treatment, as it may further reduce sper-
matogenesis or impede ejaculation, though it is yet again 
primarily based on information on standard parameters, 
as those on SDF are insufficient [23]. For these patients 
both non-surgical-, and if necessary, surgical options are 
available, such as testicular sperm extraction or epididy-
mal sperm aspiration [24].

Among lifestyle factors, smoking had the greatest 
impact on SDF. It is known to affect health, including 
sexual health. Ramlau-Hansen et al. even showed a dose-
dependency when investigating the effect of smoking on 
semen volume, concentration, and motility [25]. Several 
risk factors show a dose-dependency in our study, such 
as smoking, alcohol consumption, and BMI. Contrary 
to our expectations, based on the recommended, but 
not evidence-based short ejaculatory abstinence proto-
col supported by Gupta et  al. based on standard semen 
parameters, different abstinence periods did not seem 
to alter SDF in our study significantly [26, 27]. Also, the 
effect of paternal age manifests later than expected based 
on the article by Matorras et al. at 35–39 years, which is 
above 50 according to our study [28].

Current guidelines suggest that 30–40% of infertility 
cases could be idiopathic in males, with a sole discrep-
ancy in seminal parameters [6]. The underlying cause 
could be high sperm DNA fragmentation, which in turn 
could be caused by several mechanisms, including apop-
tosis, chromatin remodeling, the damage inflicted by 
ROS, endogenous enzymes, or exogenous factors, such as 
lifestyle and environmental factors exerting their effects 
through ROS [6, 29]. ROS are naturally produced in 
the body and are essential for several fertilization steps. 
However, overproduction and imbalance lead to oxida-
tive stress and alterations of proteins, lipids, and DNA, 
especially in high concentrations, as sperm cells cannot 
prevent or repair the damage, although an egg cell can be 
of some assistance in the repair process [6, 30–33]. Thus, 
antioxidants have been extensively studied as a potential 
solution. Unfortunately, there is no evidence to support 
the use of antioxidants since the balance – both oxidative 
and reductive stress – should be considered, which can-
not currently be measured correctly in clinical practice. 
Therefore, there is no clinically proven antioxidant regi-
ment that could improve fertility [6]. Although the effect 
of various antioxidants could potentially be monitored 
via SDF measurements, more data are required.

Another issue concerning fertility is that there is no 
clinically defined “normal range” for SDF to distinguish 
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between infertile and fertile men. Moreover, the only cer-
tain impact of a higher SDF is on miscarriage rates, no 
definite results are available on other aspects of pregnan-
cies [34]. Currently, the preferred values of SDF are below 
25%, but patients are still eligible for in vitro fertilization 
treatments with an SDF of up to 50% [35, 36]. One of the 
main reasons for the lack of reference ranges is the lack of 
a gold standard assay method. The most common include 
TUNEL and alkaline Comet assays, which determine 
DNA fragmentation directly, and SCD and SCSA used 
for the indirect measurement [6]. Another issue is the 
lack of inter-laboratory standards, which mean that every 
laboratory has to establish its own interpretations for its 
own assay. Thus, it is difficult to compare values between 
different laboratories [7].

Despite these shortcomings, other meta-analyses of 
SDF have been conducted, most commonly on varicocele. 
Varicocele is a common condition in approximately 15% 
of males and is thought to be a reversible cause of infer-
tility when the correct indications for surgery are applied 
[37, 38]. It occurs in 19–81% of males, depending on 
whether infertility is primary or secondary, begging the 
question of its contribution to DNA fragmentation and, 
thus, infertility [39]. In a meta-analysis by Wang et al., the 
mean difference in SDF in males with and without vari-
cocele turned out to be 9.84%, which is in line with our 
pooled results [9]. Only a handful of meta-analyses have 
examined the effect of a risk factor on SDF. Sepidarkish 
et al. compared BMI categories concerning SDF and had 
results that were supported by ours too. On the other 
hand, Gonzalez et al. reached the same conclusion as we 
did: namely that DNA fragmentation also increases with 
increasing paternal age, although they did not specify the 
age after which the deterioration is more severe [40, 41]. 
The review by Durairajanyagam et al. on lifestyle factors 
found similar factors contributing to infertility, but it did 
not expand on SDF in detail, instead it rather focused on 
standard semen parameters [42]. Contrary to our find-
ings, Hanson et  al. investigated the effect of different 
abstinence periods, but only had eight publications deal-
ing with SDF. Half of them concluded that different absti-
nence period did not alter SDF, whereas others showed 
that the longer the abstinence period was, the worse the 
SDF values were. Therefore, confident conclusions could 
not be drawn from the review by Hanson et al. [27]. If we 
knew the best abstinence period, patients could single 
handedly influence their SDF and the goal for every risk 
factor would be to intervene so as to minimize the DNA 
fragmentation.

The best studied intervention is varicocelectomy, 
which, according to the meta-analysis by Qiu et  al., 
reduces SDF by approximately 6% [43]. Another inter-
vention that Maleki et  al. found to improve DNA 

fragmentation, was high-intensity interval training, 
which improves SDF by approximately 15% in different 
groups compared to non-exercising controls [44]. Dietary 
modification is also often recommended after fertility 
assessment, but there is a lack of data to support such an 
intervention, especially for SDF [45].

The above examples show that we do not clearly under-
stand several risk factors affecting sperm DNA frag-
mentation, let alone the possible means of reducing it. 
However, once we clarify the above, we can move on to 
the more important questions, i.e., their impact on preg-
nancy rates and live births.

Strengths and limitation
Regarding the strengths of our analysis, we followed 
our protocol, which was registered in advance. A rigor-
ous methodology was applied, and we included a large 
number of studies and a high number of patients, which 
resulted in the generalizability of our results. In addition, 
subgroup analyses led to more precise conclusions.

There are several limitations to our study. First, the 
included studies have different study designs, data collec-
tion methods, inclusion and exclusion criteria, definitions 
of fertility, and risk factors outcome measures. Many 
studies did not account for confounding factors. Lastly, 
the outcome measurements were also different between 
the studies. All this produced substantial heterogeneity.

Conclusion
Our results suggest that several lifestyle-, environmen-
tal-, and additional health factors are associated with 
increased sperm DNA fragmentation.

Implications for practice and research
On the basis of previous evidence, there are clear benefits 
of rapidly integrating results into clinical practice [46]. 
For patients with high SDF, specific treatment options 
and interventions should be sought based on the risk fac-
tors present. However, more research would be needed to 
clarify the direct effect of SDF on pregnancy outcomes. 
On the other hand, clear measurement protocols should 
be included in the guidelines.
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