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Abstract 

Pre-eclampsia (PE), associated with placental malperfusion, is the primary reason for maternal and perinatal mortality 
and morbidity that can cause vascular endothelial injury and multi-organ injury. Despite considerable research efforts, 
no pharmaceutical has been shown to stop disease progression. If women precisely diagnosed with PE can achieve 
treatment at early gestation, the maternal and fetal outcomes can be maximally optimized by expectant manage-
ment. Current diagnostic approaches applying maternal characteristics or biophysical markers, including blood test, 
urine analysis and biophysical profile, possess limitations in the precise diagnosis of PE. Biochemical factor research 
associated with PE development has generated ambitious diagnostic targets based on PE pathogenesis and dissect-
ing molecular phenotypes. This review focuses on current developments in biochemical prediction of PE and the 
corresponding interventions to ameliorate disease progression, aiming to provide references for clinical diagnoses 
and treatments.
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Background
Pre-eclampsia (PE) is a hypertensive complication during 
pregnancy that occurs at a rate of 3–5% worldwide [1], 
which has been subdivided into early-onset forms less 
than 34 weeks of gestation and late-onset forms of more 
than 34 weeks of gestation [2]. The pathophysiology of PE 
is still unclear. Increasing scientific evidence have sug-
gested a series of stages of disease development (Fig. 1) 
[3–6]. Firstly, under the influence of genetic factors, 
environmental factors, and immunological factors, the 
placental insufficiency originates during the first and sec-
ond trimesters of placentation [3, 7]. The genetic factors 
mainly include the imbalance of maternal and fetal solu-
ble fms-like tyrosine kinase 1 (sFlt1) single nucleotide 

polymorphisms, decidual transcriptome, and heme 
oxygenase isoform [8]. Meanwhile, diabetes mellitus, 
hyperglycemia, and chronic hypertension in pregnancy 
can greatly raise the morbidity of PE [9]. Additionally, 
immunological factors such as placental T helper 1 cell 
predominance, decidual natural killer cells and immuno-
genic human leukocyte antigen-C on trophoblasts will 
also affect the PE progress. Then, during the late second 
and third trimesters, the invasive trophoblast superficial 
invasion narrows maternal vessels, leading to placental 
ischemia [8]. The oxidative stress and persistent hypoxia 
of placenta will increase the levels of sFlt1 and soluble 
endoglin (sEng), syncytial decries, and pro-inflammatory 
cytokines in the maternal circulation [10]. High levels of 
sFlt1 and sEng can result in systemic vascular dysfunc-
tion including proteinuria, hypertension, eclampsia and 
HELLP syndrome (hemolysis, elevated liver enzymes 
and low platelets). Accordingly, PE patients have a larger 
probability to deliver small-for-gestational age infants.

Appropriate antenatal care, management and treat-
ment are promising to reduce the risk of PE with 
early identification. Currently, the diagnosis of PE is 
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fundamentally based on the maternal characteristics 
including age, origin, body mass index (BMI), PE history, 
chronic hypertension, and conception method, followed 
by extrapolating and incorporating these characteris-
tics into a designed mathematical formula to calculate 
the potential risk of PE occurrence [11]. By this tradi-
tional way, only 40% of all PE at false-positive rate (FPR) 
of 10% can be identified [12]. Besides, blood pressure 
(BP) is a routine test in antenatal care for PE assessment, 
and an exceeding threshold of 140/90  mmHg has been 

recognized as hypertension. Since the considerable vari-
ability among each individual hinders an accurate assess-
ment of BP, the PE detection rates using BP ranges from 
8 to 93% [13]. Based on these, the mean arterial pressure 
(MAP), showing higher predictability than systolic or 
diastolic BP, has been highly recommended by validated 
automated devices [14]. Patients who develop PE demon-
strate the increase in MAP at 11–13 weeks of gestation, 
but the detection rate of using MAP in isolation was only 
30% for early-onset PE at a 10% FPR, and the combined 

Fig. 1 Pathophysiology of preeclampsia. Genetic factors, environmental factors and immunological factors are contributing factors to preeclampsia 
(PE). Genetic factors mainly include single nucleotide polymorphisms in sFlt1, mutations in corin and Titin genes, transcriptionally inert and L-3 
hydroxyacyl-CoA dehydrogenase deficiency. Also, maternal hyperglycemia, diabetes, chronic hypertension, obesity and preexisting cardiovascular 
system may also induce the PE. Immunological factors mainly include the shift from T helper cells to Th1 phenotype, inhibition of uterine NK 
cells, increased HLA-C trophoblasts and elevated complement levels. These factors can lead to impaired trophoblast invasion and maternal vessel 
narrowing, causing placental ischemia and abnormal placentation. Then, the levels of circulating soluble fms-like tyrosine kinase 1 (sFlt1) and 
soluble endoglin (sEng) will increase, that reduces angiogenesis and causes systemic vascular dysfunctions such as proteinuria, liver dysfunction, 
headache, stroke and hypertension. (Abbreviation: BMI, body mass index; sFlt1, soluble fms-like tyrosine kinase 1; sEng, soluble endoglin; SNP, single 
nucleotide polymorphism; TTN, Titin)
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MAP with maternal characteristics only raised the rate to 
62.5% [13]. To sum up, novel biomarkers and diagnosis 
techniques are urgently needed to improve the efficiency 
of current routines for PE diagnosis.

Maternal uterine artery blood flow is essential for the 
intrauterine environment, placental function and fetal 
growth. During the development of PE, abnormal pla-
cental perfusion leads to trophoblast damage, primary 
trophoblast invasion defects, and ultimately inadequate 
transformation of the maternal uterine vascular system 
[15]. The blood flow in the maternal blood vessels can 
be monitored by the uterine artery Doppler ultrasound 
and recorded by pulsatility index (PI). Increased uterine 
artery PI induced by poor placental perfusion is a typical 
sign of PE development [16]. The detection rate of using 
PI in isolation is approximately 77.3% for early-onset PE 
and 26.8% for late-onset PE at a 10% FPR, while the com-
bination of PI with maternal characteristics enhances 
the detection rate of early-onset PE to 100% with minor 
improvement to 46.5% for late-onset PE at the same FPR 
[17]. If PI and MAP are used synergistically with math-
ematically calculating PE risks using maternal charac-
teristics, it will exhibit a high detection rate of 89% for 
early-onset PE, but still only 57% for late-onset PE at a 
FPR of 10% [18]. Since PE-induced pulmonary embo-
lism commonly causes increased levels of mean platelet 
volume (MPV) and red cell distribution width (RDW), 
the blood tests detecting platelet count, mean plate-
let volume, and red cell distribution width have been 
raised as significant markers of PE [19, 20]. Although 
hemo-diagnosis possesses several advantages of fast and 
low-cost, their specificity and sensitivity are still unsatis-
factory. That is mainly because multiple interferences in 
plasma may make accurate detection difficult, including 
the effects of detection time, physiologic and metabolic 
changes on the blood components [21, 22]. As the major 
cases of the PE occur in late-onset forms, alternative bio-
markers remain a pressing need.

Current treatments for PE mainly include the prenatal 
aspirin for women at high risk, betamethasone for PE 
patients in early stage, intravenous magnesium sulfate 
and real-time postpartum BP monitoring, though timely 
delivery of the fetus remains the only ultimate treatment 
[23]. Currently, the American College of Obstetrics and 
Gynecology does not recommend medication for mild to 
moderate hypertension in PE, because it cannot reduce 
the risk of disease progression and may increase the risk 
of fetal restriction [24]. Treatment of PE patients with 
severe hypertension requires pharmacological therapy 
such as labetalol, nifedipine and methyldopa [24]. How-
ever, recent evidence from animal studies suggests that 
amlodipine may be superior to nifedipine due to its 
induction of Arrb1 and subsequent downregulation of 

the AT1-B2 receptor complex, but more clinical evidence 
is needed [25]. Although there exists some challenges in 
current management of PE, innovative medical thera-
pies are emerging. In this review, we discuss promising 
PE diagnostic tools by focusing on the links among path-
ways associated with PE pathogenesis and propose the 
applications of cutting-edge findings on impeding PE 
development.

Methods
We studied the prediction, diagnosis and treatment of 
preeclampsia. A systematic search of PUBMED was per-
formed to identify relevant studies by using the keywords 
of diagnosis or biomarkers or therapeutics of preeclamp-
sia. Although we strived to include the current evidence 
on the topic, this is not a systemic review of the literature.

Novel biochemical markers with PE occurrence
To date, continuous understanding of pathogenic mecha-
nisms, especially those underlying molecule changes in 
maternal blood, has inspired various targeted biochemi-
cal markers to identify PE disease process. Figure 2 shows 
promising predictive markers with their unique functions 
during PE pregnancy.

Placental associated proteins
Proteases play key roles in the placental remodeling 
process. The secretion of placental protein 13 (PP13), 
pregnancy-associated placental protein A (PAPP-A) 
and a disintegrin and metalloprotease 12 (ADAM12) 
positively correlates with the size of the placenta [26]. 
Therefore, reduction in these proteins can be recognized 
as the first trimester biomarkers of PE. PP13 from the 
galectin family produced by the syncytiotrophoblast of 
fetomaternal interference is reduced in PE patients even 
at 9–12 weeks of gestation [27]. The use of PP13 with PI 
leads to 90% detection rate in PE [28], and the combina-
tion of PP13 and PAPP-A reaches 91% of sensitivity and 
specificity at the first and second trimesters of PE [29]. 
Moreover, a significant decline in ADAM12 and PAPP-
A levels at 11–14 weeks of gestation has been observed 
in PE patients compared with control group. In contrast, 
another study claimed that ADAM12 and PAPP-A in 
combination with maternal characteristics only identified 
50% and 48% of patients who developed PE at a fixed FPR 
of 10%, respectively [30]. The prediction of PE has been 
analyzed by logistic regression using ADAM12 multiples 
of median (MoM), PAPP-A MoM, and uterine Artery 
Doppler pulse index MoM. To compare the screening 
efficiency of the nonparametric U statistic model, the 
sensitivity, specificity, and area under the subject oper-
ating characteristic curves were measured. Accordingly, 
combining the early pregnancy parameters or even the 
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first-trimester parameters with PI cannot improve the 
predictive efficiency of the model (50%) [31].

Various circulating hormones, including human cho-
rionic gonadotropin (hCG) [32, 33] and corticotropin-
releasing hormone (CRH) [34], have been reported to 
elevate in PE cases at the second trimester, indicating 
their prognostic prediction capability in the late-onset 
PE. Nevertheless, no further clinical trial within diverse 
populations has proven their high sensitivity in PE detec-
tion. Moreover, the endothelial dysfunction is a key medi-
ator during PE [35]. First, the placental selectin involved 
in leucocyte trafficking changes in PE progression. 
Increased E-and L-selectin but decreased P-selectin have 
been detected in the early-onset of PE [36]. Pentraxin 3 

(PTX3), an inflammation biomarker, has been observed 
to elevate in the first trimester at 11–14 weeks in patients 
who subsequently developed PE [37, 38]. Similarly, 
asymmetric dimethylarginine (ADMA) also found to be 
increased in the first trimester at developing early-onset 
PE [39]. PTX3 and ADMA might possess mechanistic 
links between vascular effects in PE and later cardiovas-
cular risk [40], and the abnormal elevations in both were 
able to segregate high risk PE patients at early stage [41].

Furthermore, renal blood flow and glomerular filtration 
rate (GFR) were commonly observed to be decreased in 
PE patients [42]. Proteinuria will be raised responding to 
the injury of the glomerular capillary. Currently, the gold 
standard for PE diagnosis is the 24-h urine collection that 

Fig. 2 Current biochemical markers for early prediction of PE. A series of biochemical markers has been identified to predict the PE in the first 
and second trimesters, including exosomes, cell-free fetal DNA, cell-free maternal RNA, angiogenic markers and placental associated proteins. 
These markers possess specific detection time during the stages of pregnancy. (Abbreviations: ADMA, asymmetric dimethyl arginine; ADAM12, 
A disintegrin and metalloprotease12; CRH, corticotropin-releasing hormone; hCG, human chorionic gonadotropin; PTX, Pentraxin; PIGF, placental 
growth factor; PP-13, placental protein-13; PAPP-A, pregnancy-associated plasma protein A; sEng, soluble endoglin; sFlt-1, soluble fms-like tyrosine 
kinase 1; VEGF, vascular endothelial growth factor; cffDNA, cell-free fetal DNA; miR, microRNA.)
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assesses proteinuria. Moreover, the 12-h urine collection 
for proteinuria also shows high clinical efficiency (sensi-
tivity, 92%; specificity, 99%) with convenient management 
[43]. However, the results may be unreliable, because the 
inaccurate collection may affect the results of PE diag-
nosis. The actual prevalence of significant proteinuria is 
varied by laboratory processing methods [44]. To com-
bat this, more convenient and accurate diagnostic tests 
that are capable of prognosticating kidney injury of PE 
patients have been developed recently. Valdes et al. [45] 
reported that the protein/creatinine ratio (PCR) yielded a 
high positive predictive value of 96.4% at FPR 4.4% (AUC, 
08,802) which could substitute the 24-h urine collection. 
Unfortunately, creatinine is not sensitive to the real GFR 
decline, as it could be largely affected by the secretion 
from renal tubules, muscle mass, protein uptake, and 
physical activity [46]. Instead, Cystatin C filtered by glo-
merulus provides potential advantages for accurate PE 
prediction. Patients with high Cystatin C concentration 
have been widely reported to have a risk for subsequent 
PE development [47–49]. To conclude, more accurate 
studies focusing on the efficiency of placental associated 
protease are needed.

Angiogenic markers
Angiogenesis in the placental vascularization refers to 
the remodeling of new blood capillaries from the pre-
existing vasculature mediated by the synergistic actions 
of pro- and anti-angiogenic factors [50]. Both endothelial 
cell proliferation and migration are activated by vascular 
endothelial growth factor (VEGF) and placental growth 
factor (PIGF) that restore the vascular integrity [51]. 
Soluble Feline McDonough Sarcoma-like tyrosine kinase 
1 (sFlt-1), a decoy receptor, sequesters VEGF and PlGF 
interaction with the VEGF-1 receptors on endothelial 
cells to impair the endothelial cell–cell communication 
and cause vascular dysfunction and hypertension [52]. 
As a result, PE patients normally show increased circu-
lating sFlt1 concentrations but decreased levels of VEGF 

and PlGF. Single PIGF determination has been reported 
to predict PE with a sensitivity of 100% at a concentration 
threshold of 120.16  pg/mL and a diagnosis accuracy of 
70.8%, while sFlt-1 only exhibited the diagnostic accuracy 
of 76.9%, sensitivity of 73.1% and specificity of 80.8% [53]. 
Hence, Zeisler et al. [54] suggests that a sFlt-1/PIGF ratio 
of less than 38 can discover the short-term absence of PE 
in women with suspicion of PE. A recent study demon-
strated that PE diagnostic performance using the sFlt-1/
PIGF ratio can achieve 95% sensitivity and 91% specificity 
which is superior to VEGF, PIGF or sFLt-1 [55]. Lately, 
several studies have attempted to use the VEGF genetic 
polymorphisms for early prediction of PE but there 
remains a lack of clinical competence [56, 57].

Chronic placental hypoxia exposure to the pro-inflam-
matory cytokines gradually increases the secretion 
of transforming growth factor-β (TGF-β) superfam-
ily including inhibin-A, activin-A and soluble endoglin 
(sEng), which can be considered as endocrine markers 
for disorder prediction [58]. However, sEng-based diag-
nostic accuracy in maternal serum was only shown with 
62.1% sensitivity and 56.8% specificity [53]. Even the 
combinations of sEng and PP13, PAPP-A, ADAM12, 
inhibin A or activin A only achieved 60%-80% sensitivity 
and approximately 80% specificity in the first or early sec-
ond trimester [59], which causes poorer results than that 
of the sFlt-1/PIGF.

Overall, the angiogenic markers may be useful as 
a screening test, but no solid evidence performs to 
date documenting clinical implementation. The clini-
cal studies are limited by single national region, small 
scale of participant population and lacking convenience 
sampling.

Cell‑free fetal DNA
Maternal blood containing the placenta-derived cell-free 
fetal DNA (cffDNA) have provided a new way for non-
invasive prenatal testing (Table  1). CffDNA plasma level 
increases during PE pregnancy at an early gestational age 

Table 1 Application of cffDNA associated genes in PE prediction

Marker gene to quantify Gestational 
age (in 
weeks)

Results in PE prediction

Hypermethylated RASSF1A 8–17 cffDNA concentration at cutoff value of 7.49 GE/ml showing 100% sensitivity and 50% specificity [60]

11–13 cffDNA concentration at cutoff value of 512 GE/ml showing 100% sensitivity and 50% specificity [60]

15–28 cffDNA concentration increased 3.3-fold [59]

21- 40 The positive correlations of hypermethylated RASSF1A with PAPP-A, PP-13 and urine protein in PE [59]

DSCR3, RASSF1A, HYP2 6–14 The combination of DSCR3, RASSF1A, HYP2 and PAPP-A with 66.9% of detection rate at 10% of FPR [58]

Y chromosome specific gene 15–20 cffDNA concentration at cutoff value of 2.62 GE/ml showing 90% sensitivity and 85% specificity for 
early-onset PE [64]
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and can reflect the placental apoptosis and necrosis [60]. 
The principle of cffDNA analysis is based on the promoter, 
RASSF1A gene (Ras association domain family 1 isoform 
A), which was hypermethylated in placenta but hypo-
methylated in maternal blood cells [61, 62]. Saraswathy 
et  al. [63] observed hypermethylated RASSF1A concen-
trations elevated 3.3-fold in PE before the occurrence 
of clinical symptoms. At gestational age of 8–17  weeks, 
the cffDNA concentration turned positive before the PE 
onset, with 100% sensitivity and 50% specificity [64]. This 
is consistent with a recent study, in which maternal blood 
at 11–14  weeks of pregnancy estimating a cut-off value 
of cffDNA concentration at 22.54 GE/ml could predict 
the PE with 85.0% sensitivity and 81.8% specificity [65]. 
Except for RASSF1A, other gene makers have been dem-
onstrated to identify the cffDNA. For instance, the Sex-
degerming region Y [66–68], β-globin [68] and DYS [60] 
have shown great potential for PE prediction. As shown 
in Table 1, the quantity of cffDNA is a promising marker 
[69]. Moreover, further studies are necessary to minimize 
the heterogeneity of population scale, result assessments 
and evaluation methods.

Cell‑free RNA
Plasma cell-free RNA (cfRNA), a non-invasive manner, 
possesses a marked and stable level in the early gesta-
tion of PE patients (Table  2). Thus, cfRNA can reveal 
the pregnancy progression and determine the PE risk 
months before clinical symptoms present. The changes of 
cfRNA are enriched for genes specific to the neuromus-
cular, endothelial and immune cells and tissues, reflect-
ing the correlation between PE progression and maternal 
organ health [70–73]. According to Mira et al., the identi-
fication and independent validation of a panel of 18 genes 
measured between 5 and 16 weeks of gestation can form 
the basis of a liquid biopsy test, shown in the Table  2 
[74]. The cfRNA extracted from a single blood draw can 
track the pregnancy progression at the placental, mater-
nal and fetal levels and reliably predict PE with a sensi-
tivity of 75% and a positive predictive value of 32.3% 
[75]. Notably, the cfRNA characteristics are independ-
ent of various clinical factors including the maternal age, 
body mass index, and race, cumulatively accounting for 
less than 1% of the model variance. cfRNA also provides 
molecular evidence for the pathogenesis of PE caused 
by early placental abnormalities and systemic endothe-
lial dysfunction [75]. Regardless of the type or severity 
of onset, placental signaling in PE is weakened, and the 
platelets and endothelial cells drive changes in cfRNA 
in PE patients, especially before the 20-week gestation. 
The increase in cell type-specific cfRNA may occur in 
part through the cellular signal transduction and secre-
tion. Congenital and adaptive immune systems are also 

responsible for changes in cfRNA associated with sig-
nificant metastases in the bone marrow, T cells, B cells, 
granulocytes, and neutrophils, consistent with previous 
studies on maternal placental interfaces and PE [76–78]. 
Generally, cfRNA has been considered as a novel, effi-
cient and non-invasive method to predict PE in early 
stage and discover the underlying signaling pathways of 
PE pathology.

Exosomes
Exosomes secreted by placenta increase in the PE mater-
nal circulation, and their abilities for PE pathophysiology 
evaluation and disease prediction have been investigated 
[79–81]. Plasmatic exosomes from PE patient deliver 
abundant sFlt-1 and sEng to endothelial cells, causing vas-
cular dysfunctions [82]. As mentioned before, a candidate 
marker PlGF also presented in exosomes, achieving 100% 
sensitivity and 78.6% specificity of PE prediction [83]. 
As PE can disrupt the immune balance, the quantifica-
tion of exosomal Th1/Th2 cytokines including increased 
IL-2 and TNF-α with decreased IL-10 shows clinical sig-
nificance in PE diagnosis [84]. In addition to the effect on 
protein, the placental-derived exosomes can also alter the 
RNA cargo [85, 86]. A study mapping the microRNA pro-
files in plasma exosomes extracted from maternal plasma 
of PE patients compared with those from normal preg-
nancies showed significantly different expression levels of 
miR-134, miR-376c, miR-486-3p and miR-590-5p in the 
first trimester (2–12  weeks) [87]. Moreover, novel miR-
483, miR-424, miR-101, miR-203a-3p and miR-548c-5p 
were reported to be downregulated [88–92], while miR-
431, miR-15a-5p, miR-125a-5p, miR-486–1-5p and miR-
486–2-5p was aberrantly upregulated in the exosomes of 
PE patients [93–96]. Based on these identifications, exo-
somal miRNAs as a critical factor significantly expands 
the prospects for PE prediction. New detection methods 
such as microarrays chip, molecular beacons, and elec-
trochemical sensors show the sensitivity and specificity 
for evaluating exosomes with heterogeneous subtypes 
[97], but systemic high-throughput analysis of exosomal 
RNA is still challenging as it translates from bench to 
bedside.

Single‑cell transcriptomes
The single-cell RNA sequencing offer unique opportu-
nity for identifying the abnormal gene expression with 
high resolution in tissues and organs including the troph-
oblast-decidual interactions [98]. The Illumina Hiseq 
and Genome Analyzer II systems are popular tools in 
the placental research and have been extensively used 
thanks to the low-cost. The first single-cell atlas of the 
maternal–fetal interface was reported in 2018, reveal-
ing the landscape of early pregnancy. An array of unique 
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Table 2 Preeclampsia prediction relies on 8 increased cfRNA genes and 10 decreased cfRNA genes (Summarized from Moufarrej et al., 
2022 [70])

Abbreviation NR Not reported

Gene trends Marker gene to quantify Biological process Molecular function

Enriched in PE DERA
(Deoxyribose-phosphate aldolase)

- Pentose-phophate shunt
- Deoxyribose phosphate catabolic 
process

- Deoxyribose-phosphate aldolase activity
- Protein binding

KIAA 1109 - Synaptic vesicle endocytosis
- Regulation of epithelial cell differentia-
tion
- Endosomal transport

- Protein binding

NMRK1
(Nicotinamide riboside kinase 1)

- NAD metabolic process
- Phosphorylation
- NAD biosysnthetic process

- Ribosylnicotinamide kinase activity

PI4KA
(Phosphatidylinositol 4 kinase alpha)

- Multi-organism membrane organization
- Phosphorylation
- Viral replication complex formation and 
maintenance

- Kinase activity
- Phosphatidylinasitol kinase activity
- Protein binding

PRTFDC1
(Phosphoribosyl transferase domain 
containing 1)

- Guanine salvage
- GMP catabolic process
- Purine ribonucleoside salvage

- Protein homodimerization activity
- Hypoxanthines phosphoribosyltransferase 
activity

Y_RNA NR NR

Y_RNA NR NR

YWHAQP5
(YWHAQ pseudogene 5)

NR NR

Decreased in PE CAMK2G
(Calcium/ calmodulin dependent protein 
kinase II gamma)

- Nervous system development
- Protein phopharylation
- Regulation of neuron projective develop-
ment
- Regulation of skeletal muscle adaptation

- Calcium-dependent protein serine/ threo-
nine phosphatase activity
- Identical protein binding
- Protein homodimerization activity

FAM46A
(Terminal mucleotidyltransferase 5A)

- mRNA stabilization
- Response to bacterium

- RNA adenynltransferase activity
- Protein binding
- RNA binding

LRRC58
(Leucine rich repeat containing 58)

NR NR

MYLIP
(Myosin regulatory light chain interacting 
protein)

- Nervous system development
- Regulation of low-density lipoprotein 
particle receptor catabolic process

- Ubiquitin protein ligaseactivity
- Cytoskeletal protein binding
- Protein binding
- Metal ion binding

NDUFV3
(NADH: ubiquinone oxidoreductase 
subunit V3)

- Mitochondrial electron transport
- NADH to ubiquinone

- NADH dehydrogenase activity
- Protein binding
- RNA binding

PYGO2
(Pygopus family PHD finger 2)

- Positive regulation of chromatin binding
- Developemental growth
- Regulation of histone H3-K4 methylation
- Mammary gland development

- Chromatin binding
- Protein binding
- Metal ion binding
- Histone acetyltransferase regulator activity
- Histone binding

RNF149
(Ring finger protein 149)

- Ubiquitin-dependent protein catabolic 
process
- Regulation of protein stability
- Protein ubiquitination

- Ubiquitin protein ligase activity
- Metal ion binding

TFIP11
(Tuftelin interacting protein 11)

- Biomineral tissue development
- Negative regulation of protein binding
- Spliceosomal complex disassembly

- Protein binding
- Nucleic acid binding

TRIM21
(Tripartite motif containing 21)

- Negative regulation of protein deubiq-
uitination
- Regulation of protein localization
- Regulation of gene expression

- Zinc ion binding
- Transcription coactivator activity
- Identical protein binding

USB1
(U6 snRNA biogenesis phosphodiesterase 1)

- U6 snRNA 3’-end processing
- RNA splicing

- Poly (U)-specific exoribonuclease activity
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fetal cell types derived from the early embryo, including 
villous cytotrophoblast cells, syncytiotrophoblast cells, 
extravillous trophoblast cells and maternal immune cells, 
have been detected [98]. Taking advantage of this dis-
covery, Guo et  al. [99] further compared both placental 
and peripheral blood transcriptomes to distinguish the 
fetal and maternal differences between women diag-
nosed with early- and late-onset PE. Interestingly, clas-
sical biomarkers such as sFlt-1, sEng and PAPP-A were 
only upregulated in the early-onset PE while the maternal 
blood-derived factors EBI3, IGF2, ORMDL3, GATA2 and 
KIR2DL4 were identified as new biomarkers for the late-
onset PE. In the future, increasing PE diagnostic studies 
using single-cell transcriptomes will undoubtedly help to 
drive the field forward.

Diagnostic recommendation
As shown above, while individual biomarkers demon-
strate the connections between PE progression and 
secreted factor imbalance, none of them have demon-
strated sensitivity and to be used as a test in isolation. 
Multiparametric biomarker testing may offer a path to 
improve the PE diagnosis. Early-onset PE appears less 
frequently (0.4–1%), but causes more significant dis-
ease burden due to prematurity, fetal growth restric-
tion, and increased long-term maternal cardiovascular 
morbidity, while late-onset PE is regarded as second-
ary to maternal cardiovascular and metabolic predis-
position for endothelial dysfunction [100]. In this case, 
splitting PE screening into two arms is recommended, 
including an early integrated test at 11–13 weeks and a 
second screen at 30–33 weeks for evaluating cases with 
late-onset PE [101].

Placental proteins, cffDNA and exosomes exhibit posi-
tive correlations with PE development, but considerable 
heterogeneity exists in the diagnostic accuracy according 
to current research. Hence, for the screening of low-risk 
population, biochemical biomarkers and Doppler ultra-
sonography are not recommended [102]. Currently, sev-
eral organizations suggest screening for early-onset PE 
by obtaining BP measurements incorporating the mater-
nal characteristics and urinalysis for proteinuria at each 
antenatal visit as adequate [103]. Subsequently, the late-
onset PE assessment would depend on the changes in 
angiogenic factors (PIGF/sFlt-1), indicating an ideal pre-
dictive rate for estimating the onset of PE post 34 weeks 
of gestation.

Clinical management of PE
To avoid neonatal respiratory distress syndrome in fetus 
born with preterm birth, delivering the placenta is the 
only cure for PE. Besides, PE has long-term implications 
for women. For instance, the occurrence of high blood 

pressure within 2  years of birth in women with PE his-
tory is sixfold higher than in women with no history of 
PE [104]. Therefore, effective prevention and treatment 
for this condition are sorely needed. Firstly, PE women 
should practice good health habits in the antenatal 
period, including sleeping adequate amounts, consuming 
a high-protein diet, ceasing smoking, exercising mildly 
to moderately, as well as maintaining a healthy weight. 
Additionally, salt restriction and bed rest are not recom-
mended in women at risk of PE, and folic acid together 
with multi-vitamins are preferred to prevent spina bifida 
and help normal brain development.

Though detailed expectant managements of PE in the 
international clinical practice guidelines are still incon-
sistent, their principles primary rely on two character-
istics: the gestational age and the disease severity. We 
encourage a delivery for women with confirmed PE at 
37 weeks of gestation. Elective delivery beyond 34 weeks 
should be considered. In cases of severe PE with IUGR 
below 26  weeks, the evidence suggests that termination 
of pregnancy might be a necessary form of management 
to prevent maternal morbidity [105, 106]. Regarding to 
maternal-neonatal outcomes, clinicians need to fully 
compare the risk of elective delivery against expectant 
management of severe PE less than 34 weeks of gestation 
to achieve optimal maternal and child outcomes. We do 
not encourage elective delivery for PE before 34  weeks 
of gestation unless failure to correct severe maternal 
hypertension or maternal complications (e.g. eclampsia, 
liver failure, kidney failure, disseminated intravascular 
coagulation, placental abruption, HELLP syndrome and 
acute pulmonary edema), non-reassuring fetal status or 
unavailable monitoring. Prior to 34  weeks of gestation, 
expectant management for severe PE patients should be 
the first priority at facilities with high volume maternal 
and neonatal intensive care resources.

Magnesium sulfate has been considered as the first-line 
therapy for the prophylaxis against maternal eclampsia. 
Magnesium sulfate has the effects on lowering maternal 
BP as well as fetal neuroprotection [107], demonstrating 
superiority to other anticonvulsants in the prevention of 
maternal eclampsia. The common dose protocol for mag-
nesium sulfate in PE is a 4 to 6 g intravenous (IV) loading 
dose with a continuous 1 g/h IV maintenance dose. Mild 
side effects of magnesium sulfate mainly include fever, 
flushing, nausea, vomiting, muscle weakness, dizziness 
and irritation at the injection site [108]. In randomized 
trials, the reported rates of these side effects range from 
15 to 67% [109–111]. In addition, serious side effects 
such as respiratory depression and postpartum bleeding 
require monitoring of the correct dose. Maternal deaths 
from the overdose of magnesium have been reported 
in previous clinical trials [112]. As for women with 
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gestational hypertension (Systolic BP ≥ 140  mmHg and/
or Diastolic BP ≥ 90 mmHg), antihypertensive agents are 
recommended to prevent maternal morbidity and fetus 
injury. For instance, Labetalol, a beta-blocker, is the first-
line treatment for hypertension in pregnancy. Nifedipine, 
a calcium channel blocker, is an alternative if labetalol is 
not suitable.

As for severe PE patients at 26–34  weeks gestation, 
antenatal corticosteroid therapy for acceleration of fetal 
lung maturity is recommended. Glucocorticoids can 
trigger the synthesis of ribonucleic acid that codes for 
proteins involved in the phospholipid biosynthesis or gly-
cogen breakdown [113]. Epidemiological evidence and 
animal studies suggest that the prenatal exposure to cor-
ticosteroids may lead to adverse long-term consequences 
[114]. Some animal studies have demonstrated impaired 
glucose tolerance and elevated blood pressure in adult 
animals following prenatal exposure to corticosteroids 
[115–117]. In addition, premature and full-term infants 
exposed to a single course of corticosteroids can cause 
reduced brain growth [118, 119]. Thus, the side effects of 
corticosteroid therapy will be monitored carefully.

During pregnancy, physical monitoring and assess-
ments are required to detect the PE progression. The 
blood pressure, respiratory rate, and continuous cardi-
otocography are needed to be considered. Additionally, 
the maternal assessments mainly include urea and elec-
trolytes, full blood count and platelets, liver function 
test/ lactate dehydrogenase, coagulation screen, group 
and hold serum.

Novel PE treatments
PE, characterized by the release of anti-angiogenic fac-
tors and increased oxidative and inflammatory stress, 
jointly causes endothelial dysfunction, systemic maternal 
vascular disorder and hypertension [120]. Based on this, 
current treatments of PE targeting anti-angiogenic fac-
tors, inflammation, oxidative stress, endothelial injury 
and dysfunction have been researched (Fig. 3).

Pravastatin shows potential effects to prevent and treat 
PE through promoting the angiogenic signaling, endothe-
lial colony-forming cell function and protein expression 
[120, 121]. They also play a role in reducing blood lipid, 
improving the vascular endothelial cell function, reduc-
ing the oxidative stress and inflammatory injury of sys-
temic vascular systemic [122]. Though various animal 
experiments have achieved great progress of the appli-
cation of pravastatin, its clinical use has been delayed, 
mainly because statins are classified by the food and drug 
administration (FDA) as class X [123, 124]. That means 
that the pravastatin may lead to fetal abnormalities.

In the past decade, pravastatin has shown its effect on 
preventing PE in two pregnancies, and it did not show 

teratogenic effects on pregnant women. In a cohort 
study of 890,000 people in the United States, approxi-
mately 1200 pregnant women who took statins in the 
first trimester of pregnancy experienced no increased 
incidence of congenital malformations [125]. Other 
organizations have reported similar epidemiologi-
cal results [126, 127]. Although pravastatin has been 
used in a small number of high-risk pregnant women 
for several years, randomized controlled trials have not 
been reported. Recent studies have shown that pravas-
tatin has favorable pharmacokinetic characteristics 
during pregnancy, and its safety has been confirmed 
by accumulating case studies [128]. In the future, it is 
vital to figure out the targets and duration of use. Addi-
tionally, large-scale clinical studies are needed to vali-
date whether pravastatin may be an effective drug for 
PE prevention and treatment, improving outcomes for 
pregnant women and newborns at risk for PE.

Metformin has been reported to reduce the secre-
tion of sFlt-1 from placenta as one of the markers of 
endothelial dysfunction. It can promote angiogenesis 
through inhibiting the mitochondrial electron trans-
port chain, thus implying its potential to treat PE [129]. 
Metformin, with a molecular weight of 129 Dalton, 
can be directly diffused across the placenta without 
affecting the transfer of glucose. Double infusion of 
human placental lobules in  vitro showed a lag time of 
rapid transfer of metformin from maternal to fetal cir-
culation of 1.7 ± 0.28 min. During a randomized con-
trolled clinical trial, nondiabetic or obese pregnant 
women were randomly assigned to receive metformin 
at 12–16  weeks of gestation [130]. The starting dose 
of 500  mg/day was increased to a maximum tolerable 
dose not exceeding 2500  mg. Accordingly, metformin 
decreased the frequency of PE, which is consistent with 
the results of a previous Meta-analysis [131].

Additionally, metformin had no significant effect on 
the birthweight, maternal weight, or combined adverse 
pregnancy outcomes. An in  vivo study reported that 
metformin was detected in the neonatal cord blood of 
women with polycystic ovary syndrome treated with 
metformin during pregnancy, while such concentra-
tion of metformin in fetal umbilical arteries and umbili-
cal veins are negligible [132]. Several meta-analyses have 
demonstrated that metformin has no effect on embryonic 
development including congenital malformations, and 
metformin is currently classified as class B in the United 
States and class C in Australia [133–135]. In pregnant 
women, adverse effects have been reported mainly in 
the gastrointestinal tract including nausea and diarrhea 
[135]. In addition, long-term use may produce some side 
effects, such as mild erythema and reduced absorption 
of vitamin B12 [136]. Therefore, although metformin can 
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reduce the incidence of PE, the dose and duration of use 
need to be properly controlled on a case-by-case basis.

Aspirin has been initially used for PE prevention 
via the inhibition of platelet aggregation. Patients with 
high PE risk should be treated with antiplatelet therapy, 
regardless of gestation stage [137]. Aspirin acts on a vari-
ety of immune cells and exert anti-inflammatory and 
immunomodulatory effects. First of all, Aspirin inhib-
its the natural killer cell activity induced by melanoma 
[138], and inhibits the secretion of macrophage derived 
cytokines including lipopolysaccharide induced NF-κB 
and TNF-α [139]. Aspirin also regulates the maturation 
and differentiation of dendritic cells, thus affecting their 
functions such as activating downstream T cell prolifera-
tion [140]. Besides, Aspirin increases the number of Treg, 

and indirectly enhances the function of Treg by induc-
ing the decrease of costimulatory factor expression on 
immune tolerant dendritic cells and the upregulation of 
costimulatory factor expression required for Treg acti-
vation [140, 141]. The use of Aspirin reduces the risk of 
proteinuric PE by 18%, preterm birth less than 37 weeks 
by 9%, fetal deaths, neonatal deaths or death before hos-
pital discharge by 14% as well as small gestational age 
and serious adverse pregnancy outcomes [142]. Most 
clinical practice guidelines for pregnancy hypertension 
recommend a low-dose Aspirin therapy for the preven-
tion of PE in high-risk women [143]. Currently, four ran-
domized clinical trials have shown that low-dose Aspirin 
can significantly minimize the incidence of PE [144, 145]. 
The most recent trial applying 1776 subjects found that 

Fig. 3 Novel managements of preeclampsia (PE). Increasing treatments of PE have been investigated, including Calcium supplement, Pravastatin, 
Aspirin, Melatonin and Metformin. Based on specific signaling pathways, the drugs target on the procoagulant factor secretion, placental perfusion, 
reactive oxygen species, trophoblast, endothelial function and immine system. Through improving the antithrombus, vasodilation, antioxidant, 
placentation, angiogenesis and inflammation, these drugs can finally alleviate the symtoms of PE. (Abbreviation: ALCA, activated leukocyte 
cell adhesion molecule; AMPK, 5’ adenosine monophosphate-activated protein kinase; IL-6, interleukin 6; IL-1β, interleukin-1β; LDL, low-density 
lipoprotein; LFA-1, β2-integrin; MHC-II, major histocompatibility complex II; NF-κB, nuclear factor kappa light chain enhancer of activated B cells; 
Nrf2, Nuclear factor erythroid 2-related factor 2; PGF, placenta growth factor; PTH, parathyroid hormone; sFLT-1, soluble fms-like tyrosin kinase-1; 
TXA2, Thromboxane A2; TNF-α, tumor necrosis factor-α)
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Aspirin apparently reduced the incidence of PE from 
11 or 14 weeks to 36 weeks of pregnancy, suggesting an 
early supplement from 3  months or 6  months of preg-
nancy.  Evidence also showed that Aspirin prophylaxis 
significantly reduces the early PE onset as well as preterm 
birth [146]. In  our  center, a daily dosage of 50–150  mg 
Aspirin taken at bedtime is highly recommended to 
patients with a PE history, initiating from 12 or 16 weeks 
until 35 weeks of gestation. To sum up, systematic studies 
on its regulatory effect on maternal fetal immunity in PE 
will be continued.

Calcium supplementation (≥ 1  g/day) during preg-
nancy may significantly decrease the risk of PE and pre-
term birth, especially in patients with a calcium diet 
deficiency (< 600 mg/d) [147]. Furthermore, its efficiency 
is highly correlated with the time of supplementation, as 
only taking calcium at early pregnancy stage may play 
a role in decreasing PE occurrence and pregnancy loss 
[148]. Recently, a systemic Meta-analysis of 27 rand-
omized trials involving 28 492 pregnant women showed 
that high doses (1.2 to 2  g/ day), medium doses (0.6 to 
1.2 g/ day) and low doses (< 0.6 g/ day) of calcium sup-
plementation were associated with a reduced risk of PE 
[149]. However, further studies of direct concentration 
comparisons are needed to determine the ideal calcium 
dose for PE prevention.

Melatonin is an endogenous antioxidant that can 
improve PE maternal condition. In primary trophoblast 
cells, melatonin increases the release of antioxidant 
enzyme TXN and decreases the sFlt release [150]. In pla-
cental explant models with melatonin treatment, lower 
oxidative stress (8-isoprene) and higher antioxidant 
markers (Nrf2 transposition, HO-1) were observed, but 
the secretion of anti-angiogenic factors (sFlt, sEng and 
activin A) remained steady. Similarly, melatonin reduces 
the expression of vascular cell adhesion molecules 
induced by TNF-α and upregulates both antioxidant 
TXN and GCLC expression in human umbilical vein 
endothelial cells (HUVECs) without altering the secre-
tion of sFlt or sEng. Melatonin has shown its safety and 
efficacy for both mothers and fetuses in a phase I clinical 
trial, leading to extended delivery interval by 6 ± 2.3 days, 
and the less requirement of antihypertensive medication 
on days 3–4 decreased from 71 to 13%, days 6–7 dropped 
from 51 to 8%, and at delivery reduced from 75 to 26% 
[151]. Hence, melatonin can be a possible adjuvant ther-
apy to prolong the pregnancy time and improve the clini-
cal results of PE [151].

Mesenchymal stem cells (MSCs) have received 
increasing attention for PE treatment due to their low 
immunogenicity, powerful immunomodulation, angio-
genesis and regenerative therapy, as shown in Fig.  4 
[152]. Bone marrow is the main source of MSCs, but the 

extraction process is invasive, and the number of MSCs 
decreases with age, which limits the clinical applica-
tion of MSCs [153]. Human cord blood has been found 
to be rich in MSCs, whose characteristics are similar 
to those of bone marrow MSCs [154]. Therefore, the 
MSCs derived from placenta or umbilical cord may have 
the potential to treat endotoxin-induced hypertension 
in patients with PE. Studies have shown that placen-
tal derived MSCs have great therapeutic potential in PE 
ischemia [155, 156]. In vitro culture, MSCs have success-
fully differentiated into polysyncytic trophoblasts and 
HLA-G + extra-villous trophoblasts [157]. During PE 
development, inflammatory Th1 cells would exacerbate 
immune imbalances and reduce the number of regula-
tory T cells and anti-inflammatory cytokines, leading to 
chronic inflammation and associated oxidative stress. In 
this case, MSCs can significantly improve the symptoms 
of Th1 cells of PE mouse model, implying that MSCs may 
play a significant role in maternal interface immunity 
[158]. Consistent with these, another study demonstrated 
that MSCs could improve the functions of mouse troph-
oblasts and endothelial cells to promote angiogenesis 
through attenuating the hypoxia-induced mitochondria 
damage [159]. As for the underlying mechanisms, there 
is increasing evidence that the beneficial effects of MSCs 
are exerted through the secretory bodies and reduc-
ing SFLT-1 to restore angiogenesis. Additionally, human 
placental mesenchymal-like adherent stromal cells have 
been found to secrete IL-6 and VEGF to confer neuro-
protection to nerve growth factor-differentiated PC12 
cells exposed to ischemia [160–162]. Recently, Todd 
et al. demonstrated the mechanisms of FKBPL in MSC-
mediated angiogenic and anti-inflammatory effects [163]. 
MSCs enhanced trophoblast migration and endothelial 
tubule formation under hypoxia and normoxia, which 
associated with decreased levels of anti-angiogenic pro-
tein FKBPL and increased expression of pro-angiogenic 
CD44 mRNA. Besides inhibiting angiogenesis, FKBPL 
is involved in the regulation of inflammatory pathways, 
such as STAT3 [164], which are associated with tropho-
blast functions [165, 166]. Thus, MSCs may improve the 
vascular response and symptoms of PE by restoring nor-
mal levels of FKBPL. Despite such promising results, a 
series of questions of MSC therapy in PE, including cellu-
lar quality and dosage control, need to be addressed prior 
to a clinical setting.

The MSC-derived exosomes have raised great atten-
tion due to its ability to transport angiogenesis factors, 
lipids and microRNAs. As the regulatory factors transfer 
biologically active membrane and cytosolic components 
to target cells, the dysfunctional intercellular communi-
cation can be improved. In PE, the application of MSC-
derived exosomes alleviatesdegenerative angiogenesis 
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through regulating the levels of ERK, AKT, angiopoie-
tin, PKA, VEGFR-2, VEGF and β-catenin. MicroRNAs 
(miRNAs) are small (21–23 nucleotides) single-stranded 
RNA molecules that play an important role in the post-
transcriptional regulation of gene expression by promot-
ing RNA instability or translation inhibition [167, 168]. 
The miRNAs in exosomes have been considered to char-
acterize the disease progression, and thus can be used as 
novel biomarkers to predict PE [169, 170]. In addition, 
exosomes of human umbilical cord mesenchymal stem 
cells (uc-MSCs) have been reported to protect ovarian 

granulosa cells from cisplatin-induced damage and chem-
otherapy-induced apoptosis in  vitro [171]. MiR-133b, 
a member of big miRNA family, is downregulated in PE 
though targeting serum and glucocorticoid-regulated 
kinase 1 (SGK1) [172, 173]. SGK1 is a serine/threonine 
kinase that plays a restrictive role in regulating cell sur-
vival, proliferation and differentiation. Kong et al. applied 
the trophoblast cell HPT-8 and HTR8-S/Vneo co-cultured 
with human uc-MSC-derived exosomes that had been 
transfected with miR-133b plasmids [174]. Accordingly, 
miR-133b is down-regulated and SGK1 is up-regulated in 

Fig. 4 Mesenchymal stem cell (MSC) therapeutic effect on preeclampsia (PE). The therapeutic effect of mesenchymal stem cells (MSCs) on PE has 
been investigated, mainly including anti-inflammation, pro-angiogenesis and anti-oxidance. MSCs possess abundant sources such as bone marrow, 
adipose tissue, muscle, neonatal tissue and skin. First, MSCs can secrete a series of paracrine factors, including PEG2, TGF-β, IFN-γ and M-CSF, 
target various immune cells such as T lymphocytes, B lymphocytes, dendritic cells and natural killer cells. Then, the cytokine profile, maturation, 
polarization and activation of target cells will be regulated, suppressing the inflammation occurring in PE. Second, the MSC-derived exosomes have 
raised great attention due to its ability to transport angiogenesis factors, lipids and microRNAs. As the regulatory factors transfering biologically 
active membrane and cytosolic components to target cells, the dysfunctional intercellular communication can be improved. In PE, the application 
of MSC-derived exosomes alleviates the degenerative angiogenesis through regulating the levels of ERK, AKT, angiopoietin, PKA, VEGFR-2, VEGF and 
β-catenin. Third, MSCs possess the anti-oxidant capability though transferring functional mitochondria to the target cells in affected tissues of PE 
patients. As a result, the mitochondrial ROS can be reduced, mitochondrial membrane potential and oxidative phosphorylation levels in recipient 
cells will be restored. Also, aerobic respiration will be rescued and the apopotosis of endothelial cells will be inhibited to alleviate oxitant stress 
raised by PE. (Abbreviation: AKT, RAC(Rho family)-alpha serine/threonine-protein kinase; ERK, extracellular-signal regulated kinase; IDO, indoleamine 
2,3-dioxygenase; IFN-γ, interferon gamma; IgG, immunoglobulin G; L-10, interleukin 10; M-CSF, macrophage colony-stimulating factor; miR, 
microRNA; PEG2, prostaglandin E2; PKA, cyclic-AMP cascade protein kinase A; ROS, reactive oxygen species; Th, T helper cell; TGF-β, transforming 
growth factor beta; VEGF, vascular endothelial growth factor; VEGFR-2, vascular endothelial growth factor receptor-2)
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PE groups, and miR-133b derived from exosomes in uc-
MSCs facilitates trophoblast cell proliferation, migration 
and invasion in PE via constraining SGK1. Two recent 
studies have shown that the up-regulation of placental 
miR-210 is a hallmark of severe PE [175, 176]. MiR-210 
is a primary miRNA of hypoxic response and a common 
component of tumor microenvironment, that can be 
induced in a hypoxia-inducible factor (HIF)-1α depend-
ent manner [177]. Immunoprecipitation analysis showed 
that HIF-1α regulates miR-210 expression in a variety of 
tumors. Lee et  al. suggested that the iron-sulfur cluster 
scaffold homologue down-regulated by miR-210 perturb-
ing trophoblast iron metabolism is associated with defec-
tive placentation of PE [177], indicating that miR-210 is 
promising to treat PE.

Currently, the oncogenicity of MSC therapy has turned 
researchers’ attention to the MSC-derived exosome 
treatment. The exosome, a subtype of extracellular vesi-
cle, possesses lower susceptibility to damage by hostile 
injury microenvironment (e.g. high concentrations of 
cytokines and hypoxia) than that of MSCs. Additionally, 
the exosomes can retain their efficacy after freezing, and 
thus the costly stem cell facilities are no need for MSC-
exosome production. Nevertheless, in contrast to MSCs, 
the nonrenewable exosome may be used up in  vivo. In 
clinical applications, the repeated injection line and 
procedure of MSC-exosome in specific phases may be 
considered.

Discussion
PE is a syndrome with various phenotypes, with long-
term effects on the fetus and mother including the an 
increased possibility of adult disease in fetus and a larger 
risk of cardiovascular disease in mother after pregnancy. 
There is an urgent need to identify PE in early stage in 
order to achieve their specific treatment. Such studies 
require large-scale samples, which can be achieved by 
setting rules of standardized and coordinated collection 
of clinical data and biological specimens. Future research 
should include samples scaled globally, and cutting-edge 
methods such as machine learning and artificial intelli-
gence can be considered to collect and analyze data. The 
objective is to determine the precise early PE prediction 
and the implementation of phenotypic specific therapies.

Currently, the only effective treatment for PE is child-
birth, but new treatments are being developed to reduce 
complications and prolong pregnancy. Aspirin has been 
recommended as a preventive therapy for PE in pre-
term labor, and statins are being explored as another 
potential intervention. In the future, it may be possi-
ble to target PE therapy by using pro-angiogenic factors 
or removing anti-angiogenic factors to restore angio-
genic balance. MSCs provide a promising tool for future 

therapeutic applications because of their anti-inflamma-
tory, pro-angiogenic, antioxidant and immunomodu-
latory potentials, as well as their easy isolation, great 
self-renewal ability and lack of immunogenicity. MSCs 
can be obtained from different tissue sources and vary 
in differentiation stage, proteome, and genome profile, 
achieving different functions. Although several molecu-
lar pathways have been identified, the intact mechanisms 
by which MSCs play a therapeutic role in PE are still not 
fully understood [152]. According to Zhang et al., direct 
cell-to-cell contact was insignificant during MSC treat-
ment [178]. Given the pathogenesis of PE, each secreted 
molecule from MSCs plays a partial role in restoring nor-
mal functions. In the future, the exact molecules can be 
identified by inhibiting or knocking them out individually 
or simultaneously, and their therapeutic potential need 
to be investigated. There are some issues that need to be 
addressed in bringing MSC therapy from in vivo PE stud-
ies into clinical trials. Currently, no clinical trial of long-
term exposure to MSCs has been reported and there is a 
lack of complete examination of the effects of MSCs on 
fetal and maternal health [179]. Due to their regenerative 
and angiogenic effects, MSCs may promote malignancy 
which needs to be fully studied prior to treatment [152]. 
In general, standardized procedures of isolation and 
propagation need to be developed, which will maximize 
the therapeutic potential and minimize the side effects of 
MSC therapy.

While various drugs show great potential in preclinical 
practice, the off-target effects remain of concern when 
deliver to a pregnant woman, as they can harm a develop-
ing fetus [180]. Nanoparticles, a targeted delivery system, 
can prevent the off-target effects by delivering therapeu-
tic drugs to specific cells, tissues or organs. Nanoparticles 
are similar in size to proteins, usually less than 100  nm 
[181], and can facilitate their functions by leveraging 
existing cellular mechanisms [182]. Nanoparticles can 
be targeted to epidermal growth factor receptor, which 
is expressed about 3000 times more in placenta than in 
other tissues [183]. Nanoparticles can be designed to 
cross the placenta easily into the fetal chamber, or modi-
fied to deliberately prevent them from crossing the pla-
centa, or synthesized so that the placenta is the site of 
action [184]. Nanoparticles tend to have longer half-lives 
and thus, the effective doses are commonly lower than 
therapies used alone.

An array of types of nanoparticles are promising for 
PE treatment, including liposomes, polymers, dendritic 
molecules and inorganic nanoparticles. Liposomes are 
vesicular bimolecular layers synthesized from phospho-
lipids, which can increase the solubility of drugs [185], 
but their low loading capacity may lead to rapid drug 
release and unstable storage [182]. Polymer nanoparticles 
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can be synthesized from natural or biodegradable syn-
thetic materials and can change their physical or chemi-
cal properties in response to environmental signals [182]. 
Dendrite molecules are larger synthetic nanoparticles, 
usually with a dendritic structure, strong loading capac-
ity, drug sitting on the external branch, and predictable 
pharmacokinetics [186]. Inorganic nanoparticles, such 
as gold and iron oxide, have a large load capacity and 
low toxicity [187], but they have not yet been explored 
for use in pregnancy due to their unclear safety profile. 
Emerging treatments have used target delivery therapy. 
For instance, bacteria-derived organic nanoparticles have 
been used to deliver doxorubicin into placental tissue as 
a non-invasive treatment for ectopic pregnancy [188]. 
Magnetic iron oxide nanoparticles have been used in 
a similar approach using magnetic targeting instead of 
EGFR targeting [189]. Generally, combining drugs used 
to treat PE with novel nanoparticle targeted delivery sys-
tems may further improve drug efficacy and reduce off-
target effects.

One of the challenges of PE research is their repro-
ducibility in animal models, because spontaneous PE is 
exclusive to human pregnancy, making it difficult to rep-
licate in animal models accurately. At present, cutting the 
abdominal aorta and uterine aorta in pregnant rats is one 
of the most common models, appearing the symptoms 
including systolic hypertension, increased renal endothe-
lial cells and proteinuria [190]. Besides, a transgenic blas-
tocyst with a trophoblast ectoderm expressing human 
sFlt1 via lentiviral vectors has been implanted [191]. Dur-
ing the pregnancy progress, human sFlt1 level increases 
in maternal serum, with the corresponding development 
of PE features. However, these rodents failed to develop 
all severe PE features as humans do. In addition, genetic 
rodent models have been developed. For instance, the 
BPH/5 model showed elevated MAP, proteinuria, pro-
gressive glomerular damage, and a significant decrease in 
birth rate during the third trimester of pregnancy [192]. 
COMT knockout mouse models showed similar sys-
tolic hypertension, increased sFlt1 level, and decreased 
proteinuria after delivery, but there was no evidence of 
systemic vascular injury or fetal growth restriction, sug-
gesting that the model closed to gestational hyperten-
sion or mild PE [193]. Based on the observation that 
human placenta chemically induces systemic hyperten-
sion, an old rodent model has been applied to simulate 
gestational hypertension by manipulating the renin-angi-
otensin system [194]. Although in human, PE is char-
acterized by inhibition of renin and angiotensin II, this 
animal model can mimic the molecular environment of 
uteroplacental hypoperfusion and various cytokines and 
proteins released into the maternal circulation. Follow-
ing these, animal models can extend the relevant data 

observed in human to causal relationships and can be a 
key tool for assessing toxicity and efficacy of new thera-
pies. Of course, animal models for this human-specific 
disease are imperfect, as they cannot prove thrombocy-
topenia, HELLP syndrome, eclampsia and other signs 
and symptoms that define the severe features of PE in 
human [23]. The main drivers of PE, names inadequate 
trophoblast infiltration and failure of spiral artery remod-
eling, have not been accurately modeled [195]. Since the 
gestation period of humans is significantly longer than 
that of rodents, animal models need to be exposed to 
higher doses of circulating toxins. Interestingly, studies 
have found that rodents did develop severe PE charac-
teristics when the levels of sFlt1 and sEng were increased 
[196–198]. With the development of tissue engineering, 
3-dimentional in  vitro models have attracted various 
researches due to the lack of reliable animal models. To 
ensure a good resemble of complex in vivo microenviron-
ment, scaffold materials, seeding cells, and growth factors 
are significant for cell–cell interactions and cell–matrix 
interactions [199]. Haider et al. constructed a long-term 
expanding organoid from purified first-trimester cyto-
trophoblasts embedded in Matrigel containing a mixture 
of growth factors and signaling inhibitors including epi-
dermal growth factor, Noggin and R-spondin [200]. To 
further research the underlying mechanisms and appro-
priate managements of PE, innovative experimental 
models are needed.

Conclusion
The emergence of multiple biomarkers with accurate 
test outcomes provides multi-dimensional targeting to 
complete the antenatal and postnatal care of PE, aiming 
towards ultra-rapid bedside prediction of women with 
the suspicion of PE. Various biochemical factors com-
bined with improved therapeutic approaches, which 
have been displayed to be valuable and expandable into 
widespread clinical practice, will be integrated into the 
management standard of patients with suspected or con-
firmed PE over the coming years.
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