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Abstract
Selection of the species-specific number of follicles that will develop and ovulate during the ovarian
cycle can be overridden by increasing the levels of pituitary gonadotropin hormones, FSH and LH.
During controlled ovarian stimulation (COS) in nonhuman primates for assisted reproductive
technology (ART) protocols, the method of choice (but not the only method) has been the
administration of exogenous gonadotropins, either of nonprimate or primate origin. Due to
species-specificity of the primate LH (but not FSH) receptor, COS with nonprimate (e.g., PMSG)
hormones can be attributed to their FSH activity. Elevated levels of FSH alone will produce large
antral follicles containing oocytes capable of fertilization in vitro (IVF). However, there is evidence
that LH, probably in lesser amounts, increases the rate of follicular development, reduces
heterogeneity of the antral follicle pool, and improves the viability and rate of pre-implantation
development of IVF-produced embryos. Since an endogenous LH surge typically does not occur
during COS cycles (especially when a GnRH antagonist is added), a large dose of an LH-like
hormone (i.e., hCG) may be given to reinitiate meiosis and produce fertilizable oocytes. Alternate
approaches using exogenous LH (or FSH), or GnRH agonist to induce an endogenous LH surge,
have received lesser attention. Current protocols will routinely yield dozens of large follicles with
fertilizable eggs. However, limitations include non/poor-responding animals, heterogeneity of
follicles (and presumably oocytes) and subsequent short luteal phases (limiting embryo transfer in
COS cycles). However, the most serious limitation to further improvements and expanded use of
COS protocols for ART is the lack of availability of nonhuman primate gonadotropins. Human, and
even more so, nonprimate gonadotropins are antigenic in monkeys, which limits the number of
COS cycles to as few as 1 (PMSG) or 3 (recombinant hCG) protocols in macaques. Production and
access to sufficient supplies of nonhuman primate FSH, LH and CG would overcome this major
hurdle.

Review
In many primate species, ranging from humans to great
apes to Old World monkeys, the endocrine and local
interactions between and within components of the
hypothalamic-pituitary-ovarian axis result in the selection

and maturation of a single "dominant" follicle and its
timely release of one oocyte capable of fertilization near
the middle of the menstrual cycle (Fig. 1). Knowledge of
the processes involved in the growth, selection, matura-
tion, ovulation and luteinization of the primate follicle
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has increased substantially in recent years, particularly
from experimental studies in macaque monkeys (for
review, see [1]). The importance of the pituitary gonado-
tropins, follicle stimulating hormone (FSH) and luteiniz-
ing hormone (LH) in follicular/oocyte development in
the primate ovary was recognized almost 70 years ago
[1,2], but recent efforts to experimentally manipulate
gonadotropin support are providing new knowledge of
the cellular processes controlled by FSH and LH (see pre-
ceding chapter, [3]). It is clear that methods which
increase circulating levels of gonadotropins will override
the usual mechanism that selects a single dominant folli-
cle, and stimulate the development of multiple large
antral follicles whose enclosed oocytes have the potential
for procreation (Fig. 2).

A major factor in the development and application of
ARTs to basic and applied aspects of primate reproduction
was the use of controlled ovarian stimulation (COS) pro-

tocols. These COS cycles generate numerous large antral
follicles and hence many oocytes that are available for
such ART procedures as in vitro fertilization (IVF), intrac-
ytoplasmic sperm injection (ICSI), nuclear transfer (NT),
and resultant embryos for transfer (ET) into the reproduc-
tive tract, in vitro culture and embryonic stem (ES) cell
development, or for genetic evaluation and manipulation
(see following chapters). The authors have addressed the
development and use of COS protocols in ART research in
earlier reviews over the past decade [4-6]. This chapter will
review the current status of the field, with particular
emphasis on the limitations and controversies associated
with follicular stimulation protocols.

Follicular stimulation protocols
In theory, methods which increase the levels of endog-
enous gonadotropic hormones or administer exogenous
gonadotropins should stimulate multiple follicular
growth in primates. The former approach is used clinically

Diagram of the events occurring in the ovary and reproductive tract during the initial three weeks of the fertile menstrual cycle leading to natural reproduction in primatesFigure 1
Diagram of the events occurring in the ovary and reproductive tract during the initial three weeks of the fertile menstrual cycle 
leading to natural reproduction in primates.
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in women, wherein an anti-estrogen (e.g., clomiphene
[7]) or, more recently, an aromatase inhibitor (i.e., letro-
zole [8]) is administered to antagonize or eliminate estro-
gen's negative feedback control of pituitary gonadotropin
secretion, thereby raising endogenous FSH and LH levels.
Although clinically successful in ovulation induction (few
follicles) and COS (many follicles) cycles, this approach is
rarely used in nonhuman primates (NHPs, e.g., [9])
except to consider the possible local role(s) of estrogen in
the primate follicle. Estrogen is believed to promote FSH-
stimulated folliculogenesis in some species, notably
rodents [10,11], but there is considerable controversy
regarding its actions, if any, in the primate follicle [12].
The reported lack of estrogen receptor (ER)-α in primate
follicles supported a minimal role, but the subsequent
discovery of the ER-β isoform [13] and its presence in pri-

mate follicles has renewed this controversy [14,15]. Lim-
ited studies employing steroid (including selective
estrogen) ablation during gonadotropin-stimulated antral
follicle development suggest that oocyte maturation and
fertilizability could be suboptimal in rhesus monkeys
[12], but this has not been rigorously addressed in any
NHP species or women.

Because of the greater potential for supraphysiologic
response (higher gonadotropin levels and larger follicle
numbers), investigators have preferred to administer
exogenous gonadotropins, either of nonprimate or
primate origin. Following the discovery of two distinct
pituitary gonadotropins in the 1940's, the efforts of van
Wagenen [16] and Knobil [17] demonstrated that follicu-
lar growth and ovulation could be stimulated in intact

Diagram of events occurring in the ovary and in vitro during controlled ovarian stimulation cycles leading to assisted reproduc-tion in primatesFigure 2
Diagram of events occurring in the ovary and in vitro during controlled ovarian stimulation cycles leading to 
assisted reproduction in primates. This chapter will discuss the methods and their limitations for increasing circulating lev-
els of gonadotropins (FSH, LH, CG) to override the typical selection and maturation of a single "dominant" follicle in the natu-
ral menstrual cycle, thereby stimulating the development and maturation of multiple large follicles whose oocytes can be 
collected for in vitro manipulation (e.g., in vitro fertilization, IVF) prior to return to the reproductive tract (embryo transfer, 
ET) for pregnancy initiation.
Page 3 of 12
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2004, 2 http://www.rbej.com/content/2/1/32
and hypophysectomized monkeys, respectively, using
purified preparations of macaque gonadotropins. Never-
theless, because of more general availability, investigators
also initially used nonprimate gonadotropins, typically
but not exclusively, pregnant mare serum gonadotropin,
which resulted in 1984 in the first rhesus monkey infant
born after COS, follicle aspiration, IVF and ET [18].
Indeed, investigators around the world continue to use
PMSG, now termed equine chorionic gonadotropin
(eCG) for COS protocols in NHPs, such as African green
monkeys [19].

With the emergence of clinical ART programs, investiga-
tors began to use commercially available preparations of
human gonadotropins, initially urinary preparations,
such as human menopausal gonadotropin (hMG; con-
taining both FSH and LH) and a more purified prepara-
tion of hFSH. With the advent of recombinant (r) DNA
technology in the mid-1990s, pure r-hFSH (devoid of LH
activity) and r-hLH (devoid of FSH activity) became avail-
able for testing in rhesus macaques, and is now the prep-
aration(s) of choice for many physicians treating infertile
women in ART clinics. However, a standard or optimal
protocol of human gonadotropins has not emerged from
clinical protocols in women, or from COS procedures in
any NHP species. In macaque species, for example, inves-
tigators have employed gonadotropin regimens of hFSH
alone [20-22], a combined treatment of hFSH plus hLH
[23], and a sequential protocol of hFSH alone followed by
an interval of hFSH plus hLH [24-26]. Despite the issues
described in subsequent sections, these protocols can suc-
cessfully generate multiple large antral follicles with ferti-
lizable oocytes both in adult primates and, more recently,
in prepubertal monkeys [6,27]. The latter is analogous to
the immature, PMSG-treated rodent model that is exten-
sively used in basic and applied research [28,29].

It is noteworthy that a timely LH surge of normal magni-
tude and duration does not usually occur during COS pro-
tocols, presumably due to the supraphysiologic levels of
estrogen having a predominantly negative-, rather than
positive-, feedback effect at midcycle [5]. Indeed, if one
unexpectedly occurs, oocyte collection is usually dis-
rupted or cancelled (see subsequent section). Oocytes
from FSH/LH-stimulated follicles may be collected at the
immature (germinal vesicle or GV-intact) stage for
attempts at in vitro maturation (IVM [20,30]). However,
generally, the actions of the LH surge, notably resumption
of meiosis to generate a metaphase II oocyte capable of
fertilization, are mimicked by administering a bolus of the
LH-like hormone, human chorionic gonadotropin
(hCG). Typically, urinary preparations of hCG were
employed [18,31], but more recently, pure r-hCG became
available for inducing ovulation events in women and
NHPs [21,32].

Preparations of hCG have been the hormone of choice,
particularly because of its general availability and much
longer half-life than hLH; hence, one injection is suffi-
cient to maintain surge levels over a 27–36 hr interval to
collect a large percentage of maturing (metaphase I or II)
oocytes by follicle aspiration prior to ovulation [32].
However, it is possible to produce surge levels of endog-
enous or exogenous LH for various intervals in women
and NHPs by administering either a gonadotropin releas-
ing hormone (GnRH) agonist or urinary/recombinant
hLH [33,34]. Although GnRH agonists are used success-
fully in some clinical ART programs, and may be indicated
in some patients at risk for developing ovarian hyperstim-
ulation syndrome (OHSS [35]), macaque species appear
less sensitive to such GnRH regimens. Up to 3 injections
of GnRH or a GnRH agonist only produced a short LH
surge of ≤ 14 hrs and was insufficient to reinitiate meiotic
maturation of oocytes [33]. In contrast, one injection of
hLH produced LH surges of approximately 18–24 hrs that
reinitiated oocyte development, but failed to sustain the
development and/or function of the macaque corpus
luteum. Only after two injections of hLH were adminis-
tered at 18 hr intervals did one achieve surge levels of LH
for 36–48 hrs accompanied by oocyte maturation and
corpus luteum development/function comparable to that
observed in hCG-treated animals [34]. Although these
and other [36] studies are providing needed information
on the strength-duration requirements for ovulatory
processes in primate follicles, COS regimens attempting
to induce an endogenous LH surge or providing exoge-
nous LH as an ovulatory stimulus have been rare in NHPs
[37].

A standardized regimen of human gonadotropins has not
evolved, but treatment generally begins in the early follic-
ular phase (prior to natural selection of the dominant fol-
licle, which occurs as early as day 5 of the menstrual cycle
in macaques and women) and continues for 6–11 days. At
ONPRC, the authors currently employ the following regi-
men for COS cycles after comparing three different proto-
cols in rhesus monkeys [38]. Beginning around menses,
adult, cycling females receive twice daily IM injections of
30 IU r-hFSH for 6 days, followed by 30 IU r-hFSH and r-
hLH for 3 days. On day 10, the animals then receive a sin-
gle IM injection of 1000 IU r-hCG to induce ovulatory
events. Although ovulatory follicles develop, aspiration
by laparoscopy is typically performed ≥ 27 hr after hCG
injection to retrieve maturing (M I and II) oocytes before
follicle rupture. This regimen can be individualized per
animal, based on criteria for desired numbers/size of
antral follicles and circulating estrogen levels, by varying
the interval of FSH + LH exposure [5]. However, this
requires labor-intensive efforts to regularly perform
transabdominal ultrasonography and rapid estradiol
assays, usually daily from day 7 of treatment. Also, based
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on their effectiveness and reversibility in macaques, a
GnRH agonist [22,23] or antagonist [32,39] can be
administered concomitantly throughout or during the last
part of the gonadotropin stimulation protocol to assure
prevention of an endogenous LH surge (see later section).

It should be noted that the functional luteal phase that
follows the exogenous gonadotropin treatment (FSH ±
LH, followed by hCG) in COS cycles is abnormal as noted
in clinical ART [40] and NHP [32,41] protocols. Although
circulating progesterone levels are often supraphysiologic,
due to the presence of multiple luteinized follicles/cor-
pora lutea, the length of the luteal phase is typically short-
ened. This is likely due to the suppression of circulating
pituitary LH levels by the supraphysiologic levels of ovar-
ian steroids and/or the residual action of GnRH analogs
administered during multiple follicular development
[40]. Thus, once the circulating levels of administered
hCG decline to baseline, luteotropic support for luteal
structure-function is lost, progesterone secretion declines
and early menstruation results [41]. Clinically, luteal
phase support in the form of progesterone supplements is
the method of choice to allow embryo transfer in COS
cycles [40]. However, embryo transfer during COS cycles
in NHPs is not routine. The typical approach to date is to
cryopreserve embryos and to transfer thawed embryos
into monkeys (either the egg donor or a surrogate
mother) during the luteal phase of a natural menstrual
cycle [4,42]. This eliminates any potential problem during
the luteal phase in COS cycles.

Major limitation – availability and antigenicity of 
gonadotropins
Availability of suitable gonadotropin preparations for fol-
licular stimulation protocols is the most critical limitation
to the use of ARTs in NHPs. Although nonprimate prepa-
rations, e.g., eCG, are readily available, these are by far the
least desirable gonadotropins for two reasons: species-
specificity of action and antigenicity. Following evidence
of species specificity of growth hormone action in pri-
mates, Van Wagenen speculated from her experience that
a similar species specificity applied to LH, but not FSH,
action in the primate ovary (see review [2]). Subsequent
studies appear to support this premise; e.g., primate LH
and hCG were 500–1000 times more efficient than
nonprimate gonadotropins in inhibiting 125I-hLH bind-
ing to macaque LH-CG receptors, whereas all gonadotro-
pins were equipotent for rodent LH receptors [43]. These
results emphasize the need for primate gonadotropins, at
least LH-CG, in studies in NHPs. Investigators should
realize that any activity of nonprimate gonadotropins in
NHPs is likely due solely to FSH in the preparations,
unless very large quantities are used. However, their use
especially in large amounts is further contraindicated by
the antigenicity.

The gonadotropic hormones are species-unique glycopro-
teins that elicit production of neutralizing antibodies in
NHPs. This is well-documented in macaques, where
nonprimate gonadotropins can produce ovarian refracto-
riness to further gonadotropin therapy after one COS
cycle [44]. Since human gonadotropins are more homol-
ogous to those of NHPs, one would expect a lesser
immune response, but use of urinary preparations typi-
cally produced significant titers of anti-gonadotropin anti-
bodies (as detected by protein A-precipitable 125I-hCG in
serum) and failure of further gonadotropin treatment to
promote multiple follicular development after two COS
cycles [45]. The use of recombinant human gonadotro-
pins appears to delay the immune response, allowing
three or more COS cycles per macaque before modest lev-
els of anti-LH/CG and anti-FSH antibodies were detected.
Table 1[46] summarizes evidence that following COS pro-
tocols employing r-hFSH; -hLH, and -hCG as described in
our standardized regimen: (a) only a few animals (2 of
11) display borderline levels of antibodies (i.e., 4–9% of
added 125I-labeled hCG or FSH is antibody-bound) after
two protocols, but (b) most animals (6 of 10) have bor-
derline levels and a few monkeys have high (>10% of
bound radioactive hCG or FSH) after three protocols. Due
to hCG's longer half-life (resulting in continued albeit
declining levels of hCG in the circulation for 7 days post-
injection in COS cycles [41]), it appears that animals
produce anti-hCG antibodies prior to anti-FSH antibod-
ies. Therefore, COS protocols that eliminate the hCG
bolus as the ovulatory stimulus, e.g., during oocyte collec-
tion for IVM, likely can be repeated more than three times
in macaques. Since the antibodies generated by human
gonadotropins during COS cycles do not disrupt normal
menstrual cyclicity, fertility or successful pregnancy in
macaques [45], it appears that these anti-gonadotropin
antibodies do not neutralize endogenous pituitary or cho-
rionic gonadotropins. Thus, these animals can still be val-
uable in the colony, e.g., as natural breeders or as ET
recipients, even after elimination from further COS proto-
cols due to generation of antibodies to nonprimate or
human gonadotropins.

Clearly, the availability of nonhuman primate – especially
macaque – gonadotropins would overcome the limited
ability to perform repeated COS protocols and greatly
facilitate experimentation. In the late 1980s, the National
Institutes of Health contracted for the production of
cynomolgus macaque FSH and LH by recombinant DNA
technology. However, the small amounts generated serve
primarily as antigen or reference hormone for gonadotro-
pin assays (distributed by the U.S. National Hormone and
Peptide Program). Although in rare instances they can be
used for in vivo studies in macaques [47], the limited sup-
ply precludes their use in COS protocols. Generation of
ample supplies of recombinant macaque gonadotropins
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to permit current and future use of COS protocols in ART
programs would clearly facilitate research in the NHP
model, e.g., permit repetitive use of optimal or "geneti-
cally-selected" monkeys for oocyte/embryo production,
including sequential experimental protocols on individ-
ual animals. NHP gonadotropins would permit ART-
related procedures to preserve or modify genetic-defined
animals and to maintain endangered species or genetic
lines of macaques or other primates.

Until NHP gonadotropins are available, programs are
largely dependent on the sale or donation of human
gonadotropins from a few pharmaceutical companies
(e.g., Ares Serono, Organon). Their product donations to
NHP ART programs in the past decade were critical to
many research and development efforts; the authors esti-
mate that the ART program at ONPRC annually consumes
human gonadotropins (r-hFSH, r-hLH, r-hCG) having a
commercial value of over $200,000. During the develop-
ment of clinical ART programs and the testing of recom-
binant preparations, companies recognized the value of
research efforts in NHPs as preclinical trials for their prod-
ucts. However, with the world-wide approval, use and
great demand for r-hFSH, LH and CG now established, it
is not clear that this source of materials will continue to be
available and is unlikely to allow expansion. The unset-
tling scenario of limited availability of human gonadotro-
pins as a product donation for NHP research provides
further impetus for the creation of ample supplies of
macaque gonadotropin preparations.

Ongoing controversy – the need, or lack thereof, 
for LH in COS protocols
One of the major reasons that a standard regimen of gona-
dotropin hormones has not evolved for promoting multi-
ple follicular development in COS cycles is the unresolved

issue regarding the need for LH in the protocol. It is gen-
erally recognized that LH secreted during the follicular
phase of the menstrual cycle is essential for the steroidog-
enic function of the dominant follicle destined to ovulate
at midcycle in primates [1]. This is exemplified by the two-
cell, two-gonadotropin model for estrogen production by
the follicle, wherein (a) theca interna cells contain LH
receptors and respond to circulating LH with increased
production of androgen, whereas (b) granulosa cells con-
tain FSH receptors and respond to FSH by increasing the
conversion of androgen to estrogen. The rising levels of
circulating estradiol act on various target tissues, includ-
ing the hypothalamic-pituitary axis to elicit the midcycle
gonadotropin surge which causes periovulatory events in
the mature follicle. However, it is less clear whether LH
has additional vital roles in the developing follicle in pri-
mates [3], either independent of its steroidogenic actions
or via local steroid effects analogous to androgen or estro-
gen actions in rodent follicles [12].

With the advent of pure recombinant gonadotropins,
notably r-hFSH and r-hLH, it became possible to evaluate
follicular stimulation protocols consisting of either exog-
enous FSH alone or in combination with LH, in NHPs
[39,42]. The authors chose to directly compare follicle,
oocyte, and embryo parameters in rhesus monkeys fol-
lowing protocols with r-hFSH (30 IU, 2× per day) alone or
with an equivalent amount of r-hFSH and r-hLH (30 IU
each, 2× per day). Prior to treatment, animals received a
GnRH antagonist for 90 days to maintain an LH-deficient
and hypo-estrogenic state throughout the proposed
interval of follicular growth from the preantral to mature
antral stage [48]. Morphologic assessment of ovaries
removed after GnRH antagonist treatment revealed the
absence of any follicles larger than the small (≤ 1 mm
diameter) antral stage (Fig. 3, left panel).

Table 1: Antihuman gonadotropin antibodies in macaque serum prior to and following three consecutive controlled ovarian stimulation 
(COS) cycles with recombinant human gonadotropins [46].

Protocol Number of animals 125I-hCG bounda 

Beforeb

125I-hCG bounda 

Afterb
Number of animals 125I-FSH bounda 

Beforeb

125I-FSH bounda 

Afterb

First 12 3.1c 2.9 12 2.6 2.6
Secondd 9 3.4 2.9 9 2.6 2.8

2 3.8 7.0 2 3.0 6.6
Thirdd 3 3.4 3.3 4 2.6 2.7

6 3.1 7.0 4 2.8 6.5
1 18.1 25.5 2 7.2 12.1

aRepresents protein A precipitation of antibody-bound 125I-hCG or 125I-FSH in serum. Nonspecific binding was 2.5% and 2.3%, respectively. See [45] 
for methodologic details. b"Before" and "After" represents serum samples collected seven days prior to the first injection of COS cycle and the last 
two days of the luteal phase of the COS cycle, respectively. cBaseline levels of antibody were defined as ≤ 4% of bound radioactivity (negative 
response), borderline responses were represented by 4–9% of bound radioactivity, and positive responses were present if values ≥ 10%. dOne 
animal was ovariectomized prior to the second protocol; one animal did not exhibit an ovarian response to COS during the third protocol.
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As expected, based on the two-cell, two-gonadotropin
model, the levels and patterns of circulating estradiol dif-
fered during the two treatment protocols [39]. Serum lev-
els remained at baseline (<20 pg/ml) during the first five
days of r-hFSH treatment, then increased and plateaued at
levels (~200 pg/ml) that were markedly less (p < 0.05)
than those in r-hFSH + r-hLH-treated animals. In contrast,
serum estradiol levels rose steadily following initiation of
r-hFSH + r-hLH treatment, and peaked at levels (~1000
pg/ml) that were 5-fold higher than those in r-hFSH-
treated animals. Nevertheless, either gonadotropin treat-
ment regimen could stimulate the growth of numerous
antral follicles (~24 follicles ≥ 2 mm diameter; Fig. 3, right
panel), and a greater proportion of mature (metaphase
II), fertilizable eggs were obtained at 27 hrs post-hCG
injection from FSH- versus FSH + LH-treated animals.
These findings support the concept that in pharmacologic
COS protocols, FSH alone is adequate for the folliculo-
genic and gametogenic events required to produce viable
embryos in NHPs. This finding is consistent with retro-
spective meta-analyses finding little if any difference in
ovulatory and/or pregnancy rates between hFSH and

hFSH + hLH protocols for ovulation induction or ART-ET
in women [49-51].

Nevertheless, there are indications that addition of LH has
some positive effects in COS protocols. In our macaque
study, the FSH + LH treatment regimen required a shorter
interval than FSH alone (9 vs 12 days, p < 0.05) to stimu-
late follicles to the stage of administering the ovulatory
hCG bolus. Also, all FSH + LH-treated animals achieved
the follicular development required for hCG administra-
tion, whereas 2 of 7 monkeys receiving FSH alone failed
to display adequate folliculogenesis. Although fertilized
oocytes from both treatment regimens were capable of in
vitro development to hatched blastocysts and in vivo
development to normal offspring after ET, there were
some differences [42]. Notably, embryos from FSH-only
treatment protocols were less likely to survive cryopreser-
vation and thawing, and required longer to develop to the
morula-to-hatched blastocyst stage than those from FSH +
LH protocols. It is intriguing to note that the slower pre-
implantation development rate in vitro correlated with
evidence of delayed rescue of corpus luteum function (16

Histologic sections of ovariesFigure 3
Histologic sections of ovaries. Ovaries were removed from rhesus monkeys after 90 days of treatment with GnRH antag-
onist prior to (left panel) and following administration of r-hFSH and r-hLH (right panel). Note the absence of any large (>1 
mm diameter) antral follicles following GnRH antagonist exposure, versus the development of 2–6 mm antral follicles after 9 
days of gonadotropin treatment. See text, and ref [39] for further details.
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days post-LH surge) following ET of embryos derived
from FSH-only protocols. These data suggest that inclu-
sion of LH in COS protocols improves the efficiency and
rate of preovulatory follicle development, embryo "viabil-
ity" and the rate of preimplantation embryo development
in macaques. Whether these parameters are influenced by
the greater estrogen milieu provided by LH exposure is
unknown. These results are consistent with several pub-
lished reports from clinical programs, notably those of
Filicori and colleagues [52,53], that inclusion of LH has
practical (e.g., shortens treatment and therefore hormone
costs) and theoretical (e.g., reduces heterogeneity in folli-
cle size) benefits in ovarian stimulation protocols.

Nevertheless, this issue remains controversial, as well as
the related question regarding how much LH is sufficient
for optimal folliculogenesis. It seems likely that less LH
than FSH is required; studies in hypogonadotropic,
hypogonadal women suggest that a ratio of 2 IU r-hFSH:1
IU r-hLH is optimal for promoting follicular development
[54]. Likewise, our recent study evaluating LH require-
ments for final ovulatory maturation of the naturally
selected dominant follicle during the menstrual cycle in
macaques indicates that a 2:1 ratio (but not 1:0 ratio) is as
capable as a 1:1 ratio of FSH-LH in producing an ovula-
tory follicle [55]. It is likely that some of the controversy
in this field is related to the lack of control or analysis of
endogenous LH levels during protocols, and that endog-
enous LH combined with exogenous FSH is sufficient for
follicular development. It is important that researchers
employing NHPs are aware that different GnRH analog/
gonadotropin treatment regimens do not necessarily pro-
duce similar follicles, oocytes or embryos. Moreover, their
similarity to those generated in the natural menstrual
cycle awaits rigorous analysis.

Ongoing problem – heterogeneity of animal and 
follicle response
Despite the success in developing COS protocols in NHPs,
it is apparent the response in terms of multiple follicular
development is quite variable. We reported earlier [5] that
rhesus monkeys displayed four types of responses to our
gonadotropin treatment protocols in terms of patterns
and levels of circulating estradiol: (a) classical respond-
ers with continuously rising estradiol levels throughout
treatment, (b) biphasic responders with estradiol levels
transiently declining by >20%, but rebounding thereafter,
(c) abbreviated responders with estradiol declining after
more than five days of treatment, and (d) nonresponders
with estradiol levels never rising above those observed in
spontaneous cycles. Our standard sequential regimen of
hFSH followed by hFSH + hLH resulted in the greatest fre-
quency (17 of 25 protocols or 67% of animals) of classical
responders. However, a significant percentage of animals
(8 of 25 or 33%) fell into categories b-d and either did not

reach follicle aspiration (e.g., nonresponders) or provided
oocytes that fertilized and cleaved in vitro at a much lower
percentage than those from classical responders (13% vs
41%). However, even in classical responders the variation
in peak estrogen levels (e.g., 4480 ± 1012 pg/ml, mean ±
SEM, n = 17) and numbers of oocytes retrieved (which is
positively correlated with peak estradiol levels; p < 0.05)
is remarkable.

If researchers are monitoring daily estradiol levels and fol-
licle numbers/diameters, it is possible to individualize the
treatment regimen, as in clinical ART protocols, to reduce
variability in follicular stimulation in NHPs [5]. However,
an individualized approach does not eliminate the occur-
rence of nonclassical responders. Many of the abbreviated
and biphasic estradiol responses in monkeys appear asso-
ciated with a spontaneous LH surge (>100 ng/ml) or
"mini-surge" (<100 ng/ml) on the day before declining
estrogen levels [5]. The addition of GnRH analogs (first
agonists, and more recently, antagonists) is used clinically
to prevent endogenous LH surges during COS protocols.
In addition, ART patients are often treated with these
drugs prior to starting gonadotropin treatment to permit
arbitrary initiation of protocols independent of the men-
strual cycle, thereby projecting follicle aspiration for a
convenient time during the work week. With the develop-
ment of second- and third-generation GnRH analogs,
these drugs have been administered to macaques prior to
[22], throughout [23,32] or in the latter part (unpub-
lished) of the gonadotropin treatment regimen for these
purposes. However, effective methods are needed to iden-
tify potential nonresponders prior to initiating follicular
stimulation protocols. Attempts in the clinic include eval-
uation of basal FSH levels and ultrasound monitoring of
the pool of small antral follicles [56] in ART patients.
However, these are not easily monitored in macaques,
and one report suggests that FSH levels are not predictive
of a poor response to gonadotropin stimulation in
cynomolgus monkeys [57]. Anecdotal reports suggest that
estradiol levels below those expected at the onset of the
follicular phase (or a poor estrogen response to GnRH
agonist [57]) portend a poor follicular response in NHPs,
but this has not been rigorously evaluated.

Another issue is the increasing realization that COS proto-
cols in NHPs and women result in the development of a
heterogeneous population of antral follicles that differ in
size (Fig. 4), health and perhaps maturity and oocyte
quality. For example, gonadotropin stimulation protocols
in macaques [39] can generate a cohort of antral follicles
prior to hCG injection that vary in size between 2 mm
diameter (30% of total cohort), 3 mm diameter (40%),
and 4–6 mm diameter (30%). It is unclear how this size
distribution relates to the cytoplasmic or nuclear maturity
of oocytes collected after the hCG bolus, e.g., in the above
Page 8 of 12
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study at 27 hrs post-hCG, 24 follicles ≥ 2 mm diameter
yielded 25 oocytes with approximately 20% not resuming
meiosis, 70% at metaphase I and 10% at metaphase II.
Moreover, only 52% of the mature oocytes (MII at collec-
tion or after 8 hrs in vitro) were successfully fertilized by
IVF [39]. Likewise, a recent study [58] examining follicular
histology in macaque ovaries at various intervals after
administration of the hCG bolus in COS cycles deter-
mined that (a) many of the follicles displayed the
expected features of luteinization and neovascularization
between 12 and 36 hrs post-hCG, but (b) a significant
(30–40%) percentage of follicles display features of gross
degeneration (e.g., unadhered, pyknotic granulosa cells in
the antrum) indicating follicle atresia (Fig. 5). It is
tempting to speculate that this subgroup of follicles corre-

lates with the 30–40% of follicles that do not ovulate fol-
lowing an hCG bolus in COS cycles [59]. Since follicles
are typically aspirated prior to rupture, the collected pool
of oocytes would contain those from luteinizing as well as
degenerating follicles. How this relates to the heterogene-
ity in maturation state, fertilizability, and embryonic
potential of individual oocytes is unknown. This hetero-
geneity may be a lesser issue in clinical fertility programs
where 2–3 of the "best looking" fertilized eggs/early
embryos are selected for ET in patients. However, it is a
greater issue in NHP studies where every oocyte/embryo is
a valuable commodity for basic and applied research. It is
important that researchers recognize the heterogeneity of
follicles, oocytes and embryos derived from COS proto-
cols and the potential impact, particularly in relating

Illustration of the heterogeneity in follicle size following controlled ovarian stimulation in rhesus macaquesFigure 4
Illustration of the heterogeneity in follicle size following controlled ovarian stimulation in rhesus macaques. 
The number and size of antral follicles that develop on the ovaries after daily treatment with exogenous gonadotropins can be 
estimated by transabdominal ultrasonography (left panel). The percent of the total follicle cohort at various sizes ≥ 2 mm diam-
eter on day 7 of our standard COS protocol (6 days of r-hFSH, 30 IU 2× per day, then r-hFSH + r-hLH, 30 IU each 2× per day; 
plus daily GnRH antagonist treatment [15]) are illustrated in the right panel. Typically, in this and prior [39] protocols, follicles 
vary in size between 2 to 6–8 mm in diameter.
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experimental results to those occurring in the ovarian
cycle, during pregnancy initiation and embryogenesis in
untreated NHPs.

Conclusions
Over the past 15 years, the remarkable increase in use of
COS-ART protocols in clinical practice to treat infertile
couples [60] has been paralleled by applications of this
technology to numerous NHP species, from great apes
[61] to baboons [62,63], and various Old World monkeys
[19,22,64-66] to New World monkeys [67]. Reports from

zoological settings [61,65] as well as many NHP research
centers (see also following chapters) illustrate the poten-
tial value of this approach to preserve and foster reproduc-
tion of endangered primate species or primates of a
known genetic character that are valuable for applied
research of direct relevance to human health. A large sup-
ply of competent gametes (notably oocytes) and embryos
will also facilitate basic and applied research on primate
gametogenesis, fertilization, early embryogenesis and
pregnancy initiation – areas that logistically and ethically
are difficult or cannot be performed in humans. However,

Morphology (left panel) and percent (right panel) of atretic folliclesFigure 5
Morphology (left panel) and percent (right panel) of atretic follicles. Follicles were exhibiting histologic evidence of 
atresia (pyknotic, unadhered granulosa cells in the antrum; left panel) following administration of the hCG bolus in COS proto-
cols in rhesus monkeys. Although relatively few (<10%) appear atretic prior to hCG injection (0 hr; small number below bar 
indicates sample size), the number increases significantly by 36 hrs post-hCG (40%; controls, CTRL). Moreover, the percentage 
of atretic follicles was influenced by the steroid milieu, since administration of a steroid synthesis inhibitor (trilostane, TRL) 
produced a cohort of 70% atretic follicles and co-administration of a progestin (R5020) reduced the percentage to pretreat-
ment (0 hr hCG) levels of 10%. Thus, oocytes collected prior to follicle rupture could originate from degenerating, as well as 
healthy (i.e., luteinizing, ovulatory) follicles. See ref [59] for further details, including statistical (X2) analyses. Different letters 
above bars indicate significant differences over time within controls (CTRL; hCG alone). Asterisk, or NS indicate significant or 
nonsignificant differences between treatment groups at one timepoint.
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limitations remain, including the lack of availability of
NHP gonadotropins which seriously curtails current
ovarian stimulation protocols in the predominant
research model, the Old World macaque. Also, the heter-
ogeneity of response between and within COS protocols,
in terms of the antral follicle population, oocyte quality
and embryo potential, should be recognized by primate
researchers. The latter is a significant issue for NHP studies
where every oocyte/embryo is a valuable commodity and
distributed arbitrarily between treatment groups in
research protocols. A standard gonadotropin treatment
regimen may never by generally accepted, either clinically
or experimentally, due to the controversial need for LH in
antral follicle maturation. Nonetheless, further progress
in the described research areas is likely – especially if ade-
quate sources of NHP gonadotropins become available
for in vivo studies, including COS protocols.
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