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Abstract
During the follicular phase of the primate menstrual cycle, a single follicle usually matures to the
preovulatory stage and releases its oocyte for fertilization and the potential establishment of
pregnancy. In assisted reproductive technology procedures, it is desirable to override the natural
process of follicle selection to produce many oocytes that are capable of being fertilized and
undergoing normal embryo development. The goal of this chapter is to summarize the current
views regarding the natural process of follicle selection in primates and to discuss how this process
may be amplified to produce a greater number of oocytes.

Review
The goal of this review is to summarize the current views
regarding the regulation of the primate menstrual cycle
with particular reference to the physiological mechanisms
involved in the selection of a single preovulatory follicle
and to discuss the mechanisms by which this process may
be overridden to achieve the production of multiple preo-
vulatory follicles to obtain more oocytes for use in assisted
reproductive technology studies. For this purpose, the
review will focus on the following: i) the characteristics of
preantral follicular growth, ii) the initiation of preovula-
tory follicular growth during the early through mid follic-
ular phase of the menstrual cycle, iii) the selection of the
preovulatory follicle during mid through late follicular
phase of the menstrual cycle and iv) the mechanisms by
which the normal process of follicular selection may be
overridden to produce multiple oocytes. This review sum-
marizes early work which has also been reviewed else-
where [1-3].

Characteristics of preantral follicular 
development
As summarized in Figure 1, follicular maturation to the
preovulatory stage is the culmination of a lengthy process

in which the maturation of dormant primordial follicles is
initiated as the granulosa cells begin to proliferate and
form preantral follicles. Granulosa cell division continues
and the number of granulosa cell layers increase as the
preantral follicle grows. After the preantral follicle attains
six-seven granulosa cell layers, the theca interna layer
becomes pronounced and the formation of the antral cav-
ity begins. In the absence of appropriate gonadotropic
stimulation, follicles do not develop beyond the early
antral stage and atresia occurs. It has been estimated that
the duration of time required for the growth of a follicle
from the primordial stage to the large preantral stage takes
in excess of 150 days [4]. Thus, a follicle which ovulates in
any given menstrual cycle will actually have begun to
grow at least five menstrual cycles earlier.

In primates, early antral follicles are present in ovaries
throughout the follicular as well as the luteal phase and
even prior to the onset of puberty [5,6]. It is generally
accepted that the stages of follicular development up to
and including the early antral follicle are relatively inde-
pendent ofthe pituitary gonadotropins, follicle stimulat-
ing hormone (FSH) and luteinizing hormone (LH). In
nonhuman primates, autoradiographical studies have
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shown that preantral follicle possess FSH receptors, but
not LH receptors, similar to that previously show in rats
[7,8]. Because early antral follicles are FSH responsive and
are present throughout the menstrual cycle as a product of
the continual supply of preantral follicles from the pri-
mordial pool, it is generally accepted that process of pre-
antral folliculogenesis serves to provide a constantly
available source of maturing follicles for final maturation
to the preovulatory stage when provided with the appro-
priate hormonal support, which, in primates, begins upon
the onset of puberty.

As noted above, the growth of preantral follicles does not
appear to require adult levels of FSH and LH as growing
preantral follicles are present in ovaries of prepubertal
monkeys and humans [6]. Likewise, in some humans
with inactivations of the FSH receptor, follicular growth
occurs to the large preantral stages [9]. In vitro, activin
appears to stimulate granulosa cell division in preantral
follicles [10,11] and preantral follicles are also responsive
to other members of the TGF-β family of growth factors
including TGF-β, bone morphogenetic proteins and
growth and differentiation factor-9 [9]. In addition, gran-
ulosa cells of preantral follicles are responsive to estro-
gens, androgens, insulin and insulin-like growth factor-1.
However, much of the information regarding the effects of

non-gonadotropic regulators of follicular growth has been
limited to in vitro studies and the extent to which they
may be active in vivo remains an uncertainty.

The initiation of preovulatory follicular growth 
during the early through mid follicular phase of 
the menstrual cycle
Primates are unique with respect to the long duration
required for the maturation of the preovulatory follicle
when compared with other species. Baird et al. [12] pro-
posed that the lengthy follicular phase of primates is
because the primate corpus luteum, unlike that of sheep,
cows and horses, produces sufficient amounts of estrogen
to suppress FSH secretion below the level necessary to
advance the development of early antral follicles thus
more time is required for a follicle to develop to the preo-
vulatory stage. Upon the demise of the corpus luteum,
serum levels of FSH and LH increase (the peri-menstrual
rise) and the process of preovulatory follicular develop-
ment is initiated. Although the occurrence of a peri-men-
strual rise in serum FSH concentrations was recognized by
Ross et al. [13] in their original descriptions of the hormo-
nal profiles of the human menstrual cycle, the extent to
which such a slight (30–50%) rise in FSH concentrations
during the early follicular phase participated in follicular
development was not fully appreciated until Brown [14]

Gonadotropic requirements for follicular developmentFigure 1
Gonadotropic requirements for follicular development. The early stages of follicular development do not appear to 
require cyclic fluctuations in the secretion of FSH and LH. The role of FSH is to stimulate the formation of a large preovulatory 
follicle which, because of its FSH-dependent maturation, is capable of ovulation and forming a corpus luteum in response to the 
midcycle surge of LH.
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demonstrated that changes in FSH concentrations on the
order of 10–30% are sufficient to initiate follicular
development in anovulatory women. Based on this find-
ing, Brown introduced the concept of an "FSH threshold"
to indicate that a critical concentration of FSH must be
achieved to initiate the process of follicular development.

The mid-follicular phase through the late 
follicular phase
It is during this period that follicular selection is accom-
plished. As mentioned in the previous section, a peri-
menstrual rise in FSH secretion occurs following the
regression of the corpus luteum. Thereafter, there is a
reciprocal relationship between the plasma concentra-
tions of FSH and estradiol. During the early follicular
phase prior to the emergence of a stimulated follicle,
serum FSH concentrations are elevated while estradiol
concentrations are low. Approximately five days before
the midcycle gonadotropin surge, serum estrogen concen-
trations begin to rise as the result of the emergence of a
maturing follicle. Associated with the gradual increase in
estradiol concentrations is a progressive fall in FSH con-
centrations due to the feedback actions of estrogen (and
possibly inhibin) on gonadotropin secretion [15,16]. This
classical negative feedback relationship between estradiol
and FSH is an essential component in the process of fol-
licular selection. Owing to the steady exit of follicles from
the primordial pool, there will always be a maturational
distinct population of early antral follicles within the ova-
ries ready for development to the preovulatory stage
under the influence of FSH. As a growing follicle acquires
sufficient aromatase activity as a result of FSH stimula-
tion, its production of estrogen suppresses FSH secretion
below that necessary to sustain the development of less
mature follicles which consequently undergo atresia.

The estrogen-feedback hypothesis has been tested directly
in nonhuman primates by manipulating the pattern of
estrogen concentrations during the follicular phase of the
menstrual cycle. In rhesus monkeys, subcutaneous
implants of estrogen-containing capsules on days 3–6 of
the follicular phase during the menstrual cycle prema-
turely elevated estrogen concentrations by 50–80 pg/mL
and resulted in a slight but significant fall in the plasma
concentration of FSH and an interruption of spontaneous
follicular development [17]. This negative feedback
model for follicle selection would also predict that negat-
ing the gonadotropin suppressing effects of estrogen dur-
ing the mid through late follicular phase of the menstrual
cycle should prevent the fall in FSH concentrations and
override the process of follicle selection. Indeed, passive
immunization of rhesus monkeys with anti-estradiol anti-
bodies during the mid through late follicular phase of the
menstrual cycle prevented the fall in FSH concentrations
and caused the maturation of more than one preovulatory

follicle [18]. In humans, it is well known that blockage of
the biological actions of estrogen with the antiestrogen
clomiphene results in an augmentation of gonadotropin
secretion and maturation of more than one preovulatory
follicle [19,20].

Given that FSH is essential for follicular development,
how is it then that the maturing follicle continues to
develop in the presence of FSH concentrations that are
unable to maintain the development of less mature folli-
cles? The only explanation for this paradox is that as the
follicle matures, it must become less dependent upon FSH
such that the concentration of FSH necessary to initiate
preovulatory follicular development is greater than the
concentration of FSH necessary to maintain preovulatory
follicular growth. This hypothesis was tested directly by
intravenous infusion of highly purified hFSH and hLH
into cynomolgus monkeys whose endogenous gonado-
tropin secretion was blocked by a GnRH antagonist [21].
Results of this study demonstrated that when plasma FSH
levels were maintained at approximately 10 mIU/ml,
which is the concentration of FSH circulating during the
luteal phase of the menstrual cycle, there was no evidence
of estrogen secretion. When plasma FSH concentrations
were elevated to approximately 20 mIU/mL, which is typ-
ical of FSH concentrations during the early follicular
phase, preovulatory follicular development was initiated,
as reflected by increasing concentrations of estrogen.
Once preovulatory follicular growth was apparent, a
reduction of plasma FSH concentrations to 10 mIU/ml
over a five day period was associated with a continued rise
in estrogen production.. That estrogen secretion contin-
ued to rise despite the progressive fall in FSH concentra-
tions demonstrates that the maturing follicle, as a
consequence of FSH simulation, acquires increased sensi-
tivity to FSH such that it continues to mature in the pres-
ence of FSH concentrations that are unable to initiate the
development of less mature follicles.

This finding indicates that there must be specific func-
tional changes in the FSH-stimulated follicle that renders
it less dependent on FSH than other lesser mature folli-
cles. A hallmark action of FSH during preovulatory follic-
ular development is the induction of LH receptors on
granulosa cells [8]. Granulosa cells from early antral folli-
cles possess FSH receptors and stimulation of the cells by
FSH results in the activation of adenylyl cyclase and the
production of cAMP. In response to FSH stimulation,
granulosa cells acquire LH receptors and, like that the FSH
receptor, occupancy of the LH receptor by LH also results
in the activation of adenylyl cyclase and the production of
cAMP [22]. As would be predicted by the common intrac-
ellular cAMP pathway, granulosa cells from FSH-stimu-
lated follicles respond similarly to both FSH and LH;
moreover, at non-saturating levels of FSH and LH, the
Page 3 of 7
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2004, 2 http://www.rbej.com/content/2/1/31
responses are additive [23]. The overall significance of
these findings is that while granulosa cells from early
antral follicles are only responsive to FSH, granulosa cells
from FSH-stimulated follicles are responsive to either FSH
or LH. Thus it is possible that the maturing follicle reduces
its dependence on FSH by acquiring LH receptors, and
hence LH responsiveness.

Recent studies conducted in humans using recombinant
FSH and LH by Sullivan et al. [24] support the hypothesis
that the acquisition of LH receptors on granulosa cells
protects the follicle from the decline in FSH concentra-
tions during the mid through late follicular phase of the
menstrual cycle. Women were treated with recombinant
FSH to stimulate follicular development to the antral
stages (approx. 14 mm diameter) following which FSH
treatment was terminated. In subjects who received no
additional gonadotropin treatment, peripheral estrogen
concentrations declined within 48 hr after the cessation of
FSH treatment. However, subjects who received recom-
binant LH following the cessation of FSH treatment
exhibited rising estrogen concentrations over the subse-
quent 48 hr, indicating that LH was able to substitute for
FSH in supporting the growth of FSH-stimulated follicles.
This observation is further supported by the studies in
women by Willis et al. [25] in which estrogen and proges-
terone production in response to FSH and LH by granu-
losa cells from different sized follicles was assessed. They
observed that LH responsiveness (estradiol and progester-
one production) became apparent in follicles with diam-
eters ≥ 10 mm, a size attained by the maturing follicle
during the midfollicular phase of the menstrual cycle
when estradiol levels just begin to increase [26]. A similar
role for LH in follicle selection in sheep and humans has
recently been described [27,28].

A working model for follicle selection is presented in Fig-
ure 2. During the luteal phase of the menstrual cycle, pre-
ovulatory follicular development is curtailed because the
corpus luteum, via its secretions of estrogen, progesterone
and possibly inhibin suppress FSH secretion below that
necessary to stimulate the maturation of follicles beyond
the early antral stage of development, Upon the regression
of the corpus luteum, feedback inhibition of FSH secre-
tion is relieved and FSH concentrations rise and stimulate
the progression of follicles beyond the early antral stages.
Two hallmark responses of granulosa cells to FSH are the
induction of aromatase and the induction of LH receptors.
The induction of aromatase results in the rise in periph-
eral levels of estrogen which, as noted earlier, suppress
FSH secretion such that plasma concentrations of FSH fall
below the threshold that is necessary to stimulate the mat-
uration of other less mature follicles. The concurrent
induction of LH receptors may provide the maturing folli-
cle with an additional source of gonadotropic support

which enables it to continue to mature in the presence of
FSH concentrations which are insufficient to support the
development of other follicles.

Physiological basis of controlled ovarian 
stimulation
Knowledge of the normal process of follicular selection
allows for the understanding of the physiological princi-
ples that underlie various strategies for increasing the
number of preovulatory follicles that can be stimulated to
mature. Figure 3A illustrates a description of the process of
controlled ovarian stimulation achieved by increasing the
duration that serum FSH concentrations are maintained
above threshold levels. Prolonged elevation of FSH can be

Schematic diagram of the "FSH threshold" model for the selection of the preovulatory follicle in primatesFigure 2
Schematic diagram of the "FSH threshold" model for 
the selection of the preovulatory follicle in primates. 
During the luteal phase of the menstrual cycle circulating FSH 
concentrations are held below the FSH threshold by secre-
tions of the corpus luteum. As a result, growing follicles do 
not advance beyond the preantral stage and undergo atresia. 
Upon the regression of the corpus luteum at the end of the 
nonfertile menstrual cycle, the negative feedback suppression 
of FSH secretion is released and FSH concentrations rise 
above threshold levels. One (or occasionally more) of the 
maturing preantral follicles is stimulated in response to the 
elevation of FSH and develops both the aromatase enzyme 
and LH receptors. The acquisition of aromatase results in a 
rise in systemic levels of estradiol which result in the sup-
pression of FSH secretion, which, in turn, prevents the matu-
ration of less mature follicles. The FSH-stimulated induction 
of LH receptors and the acquisition of LH responsiveness of 
granulosa cells of the stimulated follicle permit it to mature in 
the presence of FSH concentrations which are insufficient to 
stimulate the maturation of other less mature follicles.
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Physiological basis of ovarian hyperstimulationFigure 3
Physiological basis of ovarian hyperstimulation. Panel A illustrates the conventional mechanism of ovarian hyperstimula-
tion in which concentrations of circulating FSH are elevated above threshold levels either by direct administration of exoge-
nous FSH or by interfering with the negative feedback actions of estrogen on FSH secretion either by the administration of 
anti-estrogens or aromatase inhibitors. The number of preovulatory follicles increases but in an asynchronous manner owing 
to the asynchronous nature of preantral follicular development. Panel B illustrates a hypothetical way to provide a more syn-
chronous population of preovulatory follicles by increasing the number of preantral follicles prior to elevating FSH concentra-
tions and substituting FSH with LH when an appropriate number of follicles are selected.
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achieved by direct administration of exogenous FSH.
Alternately, administration of the anti-estrogens clomi-
phene and tamoxifen as well administration of an aro-
matase inhibitor, in the presence or absence of exogenous
FSH, also can result in ovarian stimulation presumably by
diminishing the negative feedback effects of estrogen on
FSH secretion [19,20,29]. As can be seen in Figure 3A, one
of the inherent difficulties in this approach to ovarian
stimulation is that follicular maturation is likely to be
asynchronous due to the asynchronous nature of the
development of preantral follicles, and this asynchrony
would become greater as the duration of elevation of FSH
persists. Thus, oocytes collected from these follicles could
differ in their maturational states as well. One possible
way of reducing the variability of differing maturational
states of follicles could be by providing a sequential FSH
and LH treatment regimen to limit follicular recruitment
to a group of follicles. Switching from FSH to LH would
maintain the growth of follicles with LH receptors on
granulosa cells but would prevent the additional matura-
tion of less mature follicles. In addition, administration of
LH in the absence of FSH may actually reduce the number
of smaller follicles, possibly by elevating intrafollicular
androgen levels [28].

A hypothetical mechanism for ovarian stimulation is
shown in Fig 3B. In this model, the number of follicles
that are "recruitable" by FSH is increased either by stimu-
lating the growth or reducing the atresia of preantral folli-
cles. This potentially could result in a greater number of
follicles at a given maturational state which would lead to
a more synchronous development of preovulatory folli-
cles. To date, however, this not possible largely because, as
described earlier, the factors which regulate the growth of
preantral follicles and their atresia in the primate ovary
have not been identified. A number of potential candi-
dates have been suggested from in vitro studies which
include estrogen, androgens and IGF-1. However, when
tested in primate models in vivo, none of these have been
shown to augment the ovarian responsiveness to FSH [30-
32]. Whether other potential autocrine/paracrine agents
such as activin or GDF-9 may be effective in increasing the
number of recruitable preantral follicles awaits further
study.
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