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Abstract
The synthesis of progesterone by the corpus luteum is essential for the establishment and
maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into
three major events; luteinization (i.e., conversion of an ovulatory follicle), luteal regression, and
pregnancy induced luteal maintenance/rescue. While the factors that control these events and
dictate the final steroid end products are widely varied among different species, the composition
of the corpus luteum (luteinized thecal and granulosa cells) and the enzymes and proteins involved
in the steroidogenic pathway are relatively similar among all species. The key factors involved in
luteal steroidogenesis and several new exciting observations regarding regulation of luteal
steroidogenic function are discussed in this review.

Introduction
The ephemeral nature of the corpus luteum (CL) makes it
even more remarkable that this tissue is able to synthesize
upwards of 40 mg of progesterone in the human on a
daily basis [1]. To accomplish this feat the steroidogenic
machinery within the cells of the CL must be highly effi-
cient. Because of progesterone's importance to reproduc-
tive success, the regulation of its synthesis by luteal tissue
has been well studied in a variety of species [2–4]. How-
ever, while the synthesis and essentiality of luteal proges-
terone production is consistent among all eutherian
mammals, luteal tissue can also produce androgens, estro-
gens, 20α-hydroxyprogesterone, and 5α-reduced pro-
gestins all of which vary dramatically across different
species [5–7]. In addition, the uniqueness of the CL as an
endocrine organ is also evident by the different mecha-
nisms whereby luteal regression occurs and by the species
specific mechanisms employed to maintain luteal proges-
terone secretion if a pregnancy ensues [8]. This concept is
clearly evident when the trophoblastic production of cho-

rionic gonadotropin in primates is compared to the mech-
anisms employed in ungulates, which modulate uterine
prostaglandin F2α production and/or secretion.

Regulation of steroid production by the CL varies remark-
ably for different species. In humans, monkeys and rumi-
nants the CL is largely dependent on pituitary-derived
luteinizing hormone (LH) acting through the cAMP/pro-
tein kinase A pathway [2]. Conversely, in rodents and rab-
bits, it is well established that prolactin and estradiol are
critical luteotrophic hormones [9]. In addition to the
direct effects of luteotrophic hormones on the luteal cells
via interaction with their respective receptors, LH and the
other luteotrophic hormones modulate luteal synthesis of
growth factors, cytokines, and other factors that in turn
influence luteal cell function [10,11]. Understandably,
the regulation of CL growth and regression is a unique
process when compared to other steroidogenic tissues and
this was best described by I. Rothchild in his treatise on "
The regulation of the mammalian corpus luteum" [12].
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He concludes that luteal progesterone production occurs
relatively autonomously; a classic-negative feedback sys-
tem seen in the other endocrine tissues does not operate
in the CL and at the end of the luteal phase, in spite of
pituitary-support, the CL undergoes regression and pro-
gesterone secretion declines. In 1996, Dr. Rothchild
updated his hypothesis and concluded that progesterone
may not only stimulate but may also be directly involved
in the process of luteolysis [13]. Thus, the changing capac-
ity for steroidogenesis by the CL is one of the more impor-
tant aspects of luteal physiology.

Steroidogenic cells within the corpus luteum of most but
not all species can be divided into two subpopulations of
cells based on size and their putative follicular cell of ori-
gin (thecal or granulosa) [14]. In addition to the gross
morphologic differences, the biochemical and molecular
phenotype of these two cell types varies throughout the
luteal phase/pregnancy as does the proportion of these
cells that make up the corpus luteum [15]. Isolation of
large and small cells in a variety of species has indicated
that the large cells exhibit the greatest basal steroid pro-
duction and are less or not responsive to addition of LH,
while small luteal cells bind LH to a high degree and
respond with pronounced increases in progesterone syn-
thesis [4,15]. Numerous reviews have described: 1) the
differences between luteal cell types, 2) the role of LH and
luteotrophic factors including those associated with preg-
nancy in regulation of luteal function, and 3) how luteal
regression is postulated to proceed. In this minireview, we
will focus on recent advances made in the understanding
of luteal steroidogenic function, comparing primates to
other species.

Cholesterol transport to and within luteal cells
The first challenge for any steroid producing cell including
luteal cells is obtaining the precursor cholesterol. While,
luteal cells can produce cholesterol de novo, this method of
obtaining cholesterol typically plays a minor role in the
normal functioning tissue as evidenced by the low levels
of HMG-CoA reductase, the rate-limiting enzyme in the
cholesterol biosynthetic pathway, and the relative lack of
the other cholesterol biosynthetic enzymes [16]. By
default then, the major mechanisms for obtaining choles-
terol are either the endocytosis of cholesterol rich low-
density lipoprotein (LDL) or the selective uptake of cho-
lesterol esters from high-density lipoprotein (HDL).

Whether LDL or HDL serves as the source of cholesterol
for luteal steroidogenesis appears to be species dependent
with mice, rats, and ruminants utilizing HDL and human,
rhesus macaques, and porcine using primarily LDL [17]
and references therein. In mice, the cloning of the scaven-
ger receptor BI (SR-BI) clarified the mechanism of HDL
sterol uptake and indicated that this receptor mediates the

selective uptake of cholesterol esters from HDL [18]. Tar-
geted deletion of the SR-BI gene demonstrated that female
mice were infertile and exhibited reduced lipid levels in
the CL as measured by oil red O staining, suggesting a
reduction in cholesterol ester storage [19]. However, the
decline in fertility could not be attributed to reduced ster-
oid output, as endocrine profiles were normal, suggesting
that de novo synthesis of cholesterol may have increased in
these animals to rectify the absence of HDL delivery. A
role for HDL and/or endogenous cholesterol stores in pri-
mate luteal steroidogenesis can also be envisioned in the
hours immediately following the onset of the LH surge
through the process of ovulation [20]. First, preovulatory
granulosa cells exhibit a build up of cholesterol ester,
however, the source of this cholesterol is not known [21].
Second, very low levels of LDL are found in human follic-
ular fluid [22–24], while follicular fluid levels of HDL are
similar to serum levels [23,24]. Third, short-term cultures
(2 hr) of luteal cells isolated from periovulatory macaque
follicles at 12, 24, and 36 h after the LH surge demon-
strated that these cells were not responsive to inclusion of
LDL or cholesterol (control) in the medium [25]. All of
these observations suggest that HDL and/or an endog-
enous source of cholesterol plays a role in the early ster-
oidogenesis by luteinizing granulosa cells. These data
contrast those of long-term cultures of human granulosa-
lutein and monkey luteal cells where LDL is known to be
critical for progesterone production by isolated cells and
HDL is ineffective [17,26]. In addition to the selective
uptake of cholesterol esters from HDL, selective uptake of
cholesterol esters from LDL by gonadal tissue has also
been demonstrated [27]. The importance of selective cho-
lesterol uptake from either HDL or LDL in primate luteal
tissue remains to be determined, as does the mechanism
that drives the initial increases in luteal cell cholesterol
storage.

Processing of the LDL/LDL-receptor-clathrin coated pit
complex has been well described, whereas the subsequent
understanding of trafficking of LDL-derived cholesterol
within the cell is not as far advanced [28]. The study of the
neurovisceral Niemann-Pick C (NPC) disorder has pro-
vided some insight in to this complex process. This dis-
ease is characterized by a mutation in the protein (NPC-1)
that is responsible for intracellular trafficking of LDL-
derived cholesterol and results in the accumulation of
unesterified cholesterol in the lysosomes and Golgi com-
plex [29]. Treatment of fibroblast cells with pharmacolog-
ical levels of progesterone is commonly used to induce the
NPC-1 phenotype. Interestingly, the high progesterone
level used to induce the phenotype in other cells is well
within the levels that would be observed in luteal cells.
Thus, luteal cells must have either adapted a mechanism
to bypass this regulatory effect of progesterone on the
NPC-1 protein, or luteal cells might utilize the high levels
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of progesterone to elevate free cholesterol in a positive
feedback mechanism and thereby produce more proges-
terone. In human granulosa-lutein cells (collected 27 h
post-LH surge), NPC-1 is localized to a subset of lyso-
somes and NPC-1 containing vesicles that are distributed
in the cytoplasm in a random pattern distinctly different
from those of free cholesterol and cytoplasmic neutral
lipid droplets [30]. In the only studies of NPC-1 in post-
ovulatory luteal cells, Gervy et al. have demonstrated that
expression of NPC-1 in pig luteal cells appears to be up-
regulated by cAMP treatment and that when preovulatory
porcine granulosa cells were luteinized in vitro there was a
progressive increase in NPC-1 expression and protein
[31,32]. Furthermore, they observed that in early luteal
tissue (24 hr post ovulation) the thecal cells stained with
greater intensity than the granulosa cells. These results
contrast those of Watari et al., who was unable to demon-
strate an effect of 8-Br-cAMP on regulation of NPC-1
expression in human granulosa-lutein cells [30]. This
appears to be a species-specific difference and expression
analyses in other species is warranted, as is the more thor-
ough analysis of regulation of NPC-1 in human luteal tis-
sues. Similar clinical and biochemical phenotypes for a
second independent gene, called NPC-2 suggest that the
two proteins may interact or function sequentially within
a common pathway [29]. NPC-2 expression and charac-
terization in luteal tissue has not been reported.

Cholesterol exists in two forms in cells and plasma lipo-
proteins, namely free cholesterol and cholesterol esters.
Free cholesterol is the precursor substrate for steroidogen-
esis. Cholesterol esters, on the other hand, consist of cho-
lesterol esterified through the 3β-hydroxyl group to
polyunsaturated fatty acids or to sulfate, which is cata-
lyzed by the microsomal acyl coenzyme A:cholesterol
acyltransferase (ACAT). Newly synthesized cholesterol
esters accumulate within the rough endoplasmic reticu-
lum and bud off as cytoplasmic lipid droplets; the abun-
dance of the latter is a key feature of luteal cells. Present in
cytoplasmic lipid droplets and lipoprotein particles, the
fatty acid esters of cholesterol can neither replace free cho-
lesterol as a structural ingredient of the plasma membrane
nor serve as direct substrates for steroid production. Cho-
lesterol esters found in cytoplasmic lipid droplets are
hydrolyzed by an extralysosomal enzyme, neutral choles-
terol ester hydrolase (NCEH), also known as hormone
sensitive lipase because its activity is tightly regulated
within steroidogenic tissues by tropic hormones includ-
ing FSH, LH and hCG [28] and references therein. Both
ACAT and NCEH are not dynamically regulated in luteal
cells, and therefore do not limit steroidogenesis.

Luteal progesterone production
Immediately after the LH surge (or hCG administration)
serum progesterone levels are known to rapidly (30 min)

increase [20]. The rapidity of this response suggests that
most of the enzymes and proteins necessary for progester-
one synthesis must be present in the cells or are rapidly
induced. The lack of the full complement of the appropri-
ate enzymatic machinery in the primate granulosa cells
and granulosa cells of several other species [25,33,34]
points to the luteinizing thecal cells as the possible source
for this immediate increase in progesterone synthesis.
Additionally, the limited vascularization of the granulosa
cells prior to ovulation in most species would theoreti-
cally not only limit the secretory capability of the granu-
losa, but also the ability of these cells to obtain precursor
cholesterol (HDL or LDL) via the vasculature. Luteal cells
isolated from early human luteal tissues express and con-
tain elevated levels of steroidogenic enzymes [35], includ-
ing the steroidogenic acute regulatory protein (StAR), a
critical protein involved in steroidogenesis [36]. Examina-
tion of luteal tissue progesterone concentrations in pri-
mates demonstrated that early luteal phase tissues had
similar or more steroid / mg of tissue when compared to
mid-luteal phase tissues [37], even though luteal secretion
(as indicated by circulating progesterone levels) is not
maximal until several days later, coincident with the mat-
uration of the vascular network [38–40]. The establish-
ment of an inadequate vascular supply to the corpus
luteum is postulated to have significant ramifications on
steroid secretion later in the luteal phase also [40].

Progesterone biosynthesis requires only two enzymatic
steps; the conversion of cholesterol to pregnenolone, cat-
alyzed by P450 side chain cleavage (P450scc) located on
the inner mitochondrial membrane, and its subsequent
conversion to progesterone, catalyzed by 3β-hydroxyster-
oid dehydrogenase (3β-HSD) present in the smooth
endoplasmic reticulum (SER). Interestingly, in luteinizing
granulosa and theca cells, both the mitochondria and the
SER undergo dramatic changes in organization and
increases in quantity concurrent with dramatic increases
in cellular progesterone synthesis. However, the mecha-
nisms driving this organelle reorganization and formation
in luteal cells and the impact these changes have on luteal
function are not fully understood.

Examination of P450scc expression in primate luteal tis-
sue indicates that the overall expression of this enzyme
remains elevated and relatively constant throughout the
luteal phase [35,41]. Progesterone secretion by isolated
small and large ovine luteal cells treated with excess cho-
lesterol substrate in the form of hydroxylated cholesterol
molecules that measure P450scc activity directly also indi-
cate that P450scc was not limiting in this species [42,43].
Furthermore, in the rat, expression of P450scc remains
elevated in CL not receiving luteotrophic support and
after serum progesterone levels begin to decline, suggest-
ing that P450scc is not the limiting factor in progesterone
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secretion in the rat CL as well [33]. Interestingly, monkey
granulosa cells collected prior to the LH surge, contained
P450scc mRNA but failed to exhibit P450scc activity (as
measured by conversion of 25-hydroxycholesterol to pro-
gesterone) [25,44]. These studies suggest that the granu-
losa cells either have not yet acquired the P450scc protein
and/or the necessary electron transfer partners (i.e., adren-
odoxin/adrenodoxin reductase). For example in human
placental tissues there is evidence that the levels of adren-
odoxin/andrenodoxin reductase limits P450scc activity
[45]. Conversely, cholesterol utilization may somehow be
blocked in these cells. Following hCG stimulation the
monkey granulosa-lutein cells (12 hr post-hCG) exhibited
a decline in P450scc mRNA levels, coincident with great-
est levels of P450scc activity [25,44]. Thereafter, granu-
losa-lutein cell conversion of 25-hydroxycholesterol to
progesterone fell off dramatically at 24 and 36 hr. Con-
versely, serum progesterone concentrations in these mon-
keys after exhibiting an initial ~25-fold increase 12 hr
post-hCG treatment, remained at those levels at 24 hr
before increasing again at 36 hr [25,44]. Overall, the
experiments cited suggest that P450scc is not limiting in
luteal progesterone secretion, with the possible exception
of the earliest stages of luteinization. Further studies are
warranted to sort out whetherP450scc is a limiting factor
during this early critical period.

The onset and regulation of 3β-HSD expression exhibits a
wide variation among different species [34]. In the human
corpus luteum, the expression of 3β-HSD is observed to
be greatest during the early luteal phase and then declines
by the mid-luteal phase where it remains in the late luteal
phase, unless stimulated with hCG [35]. Pregnenolone
conversion to progesterone by macaque granulosa cells
collected before the LH surge indicated that these cells
contain significant amounts of 3β-HSD activity, prior to in
vivo progesterone biosynthesis [25]. Increased 3β-HSD
mRNA expression by macaque granulosa cells 12 h after in
vivo hCG treatment were followed by a transient decline in
3β-HSD expression at 24 h followed by a rise to an inter-
mediate level by 36 h after hCG treatment [44]. Addition-
ally, dramatic increases in progesterone secretion by both
small and large ovine luteal cells were observed following
incubation with pregnenolone, suggesting again that 3β-
HSD is not limiting [42,43]. Thus, similar to P450scc, 3β-
HSD does not appear to be rate limiting in luteal proges-
terone biosynthesis. Indeed, the consensus of a large
number of studies in primates and in other species indi-
cate that the critical step in luteal progesterone secretion is
the movement of cholesterol from the outer to inner
mitochondrial membrane [3,4,15,44].

Discovery of steroidogenic acute regulatory 
protein
Since the discovery of steroidogenic acute regulatory pro-
tein (StAR), the protein that governs the movement of
cholesterol from the outer to inner mitochondrial mem-
brane, the focus of many studies has been on its regula-
tion and function in luteal and other tissues [46]. Prior to
the LH surge, StAR is virtually absent from the granulosa
cells which are unable to metabolize and synthesize pro-
gesterone from cholesterol precursors [44,47,48]. Con-
versely, StAR is found in high levels in the periovulatory
theca cells that are able to synthesize androgens from cho-
lesterol. These points are illustrated nicely in a preovula-
tory human follicle collected during the initial rise of the
LH surge and immunostained for StAR protein (Figure 1).
Expression of StAR transcripts and protein was greatest in
early and mid-luteal phase CL before declining in the late-
luteal phase [49,50]. In the human CL, the theca-lutein
and granulosa-lutein cells exhibited marked heterogeneity
in StAR protein concentrations, with theca-lutein cells
expressing greater levels of StAR than granulosa-lutein
cells, irrespective of the stage of the luteal phase [49].
Theca-lutein cell StAR expression was greatest in the early
luteal phase, moderate in the mid and least in the late
luteal phase, while granulosa-lutein cells exhibited mod-
erate StAR expression in early luteal tissue, increased levels
in mid-luteal phase CL and declining expression in late
luteal phase tissues [49]. Immunodetection of StAR in
granulosa-lutein cells was not homogenous, as cells adja-
cent to the central cavity contained greater amounts of
StAR, than those near the capsule [49]; the cause and
importance of this differential staining is unknown.

Administration of hCG to women preferentially increased
theca-lutein cell StAR mRNA expression and protein levels
in mid-luteal phase CL, while causing only a moderate
increase in granulosa-lutein cell expression in mid-luteal
phase CL [51]. Human CG treatment during the late luteal
phase caused a pronounced increase in both theca- and
granulosa-lutein cell StAR gene expression. These in vivo
results in women confirm previous observations in mon-
keys and in vitro results with isolated luteal cells, and dem-
onstrate an age-dependent response of the CL to hCG
[52,53]. In species where luteolysis is well established as
being driven by uterine prostaglandin-F2α, exogenous
administration of this luteolytic compound has been
shown to cause a pronounced decline in StAR gene expres-
sion [4,54]. Thus, loss of StAR expression at the end of the
luteal phase may play a key role in the decline in luteal
progesterone biosynthesis.

Transcriptional regulation of StAR gene 
expression in luteal tissues
Early studies examining steroidogenesis demonstrated
that protein synthesis was required for hormonal/cAMP
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stimulation of steroid secretion [55] and references
therein. Indeed, the loss of StAR protein following
cycloheximide treatment meshed well with this being the
critical protein. Subsequent investigations, however, indi-
cated that not only was StAR protein synthesis inhibited,
so was StAR mRNA expression, suggesting that StAR and
therefore steroidogenesis was primarily regulated at the
transcriptional level [56] and references therein. The iden-
tification and elucidation of the transcription factors that
bind to the StAR promoter has been an area of active
research [56–58]. Since the human StAR promoter lacks
the recently described cAMP-responsive element (CRE)
observed in the mouse [59,60] and because evidence sup-
porting a role for CRE-binding protein activation of

human StAR transcriptional activity is also lacking, other
transcription factor families have been evaluated [58].

Steroidogenic factor-1 (SF-1/Ad4BP/NR5A-1), a member
of the nuclear receptor superfamily, confers both basal
and cAMP-dependent responsiveness to many of the
genes encoding steroidogenic enzymes [61]. Likewise, all
StAR promoters examined contain SF-1 binding sites, and
in all cases except the mouse these sites were shown to be
essential for both basal and hormone-induced (cAMP)
regulation [60,62–66]. The method by which SF-1 bind-
ing sites confer cAMP-responsiveness and the regulatory
factors involved in SF-1 function (i.e., ligands, phosphor-
ylation, coactivators [67–69]) are not completely under-
stood. One of the confounding issues with SF-1 was the

Immunolocalization of StAR protein in a human periovulatory follicular tissueFigure 1
Immunolocalization of StAR protein in a human periovulatory follicular tissue. The theca (t) and granulosa (g) and luteinized 
granulosa (lg) cells are marked accordingly. Positive StAR staining is detected as brown staining (DAB) and the tissue was coun-
terstained with hematoxylin. Bar = 25 µm.
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observation that granulosa cells and luteal cells only min-
imally express this protein both before and after the LH
surge. Recently, Lui et al., [70] demonstrated that liver
receptor homologue-1, (LRH-1, CPF/FTF/hB1F/NR5A-2),
a closely related nuclear hormone receptor that shares
identical DNA binding mechanisms and specificities with
SF-1 [71], was present in granulosa cells before the LH
surge. Moreover, LRH-1 exhibited a pronounced increase
in expression after the LH surge and remained at high lev-
els in rat luteal tissue as long as progesterone biosynthesis
was elevated. Recently, Falender et al., [72] confirmed the
exclusive expression of follicular LRH-1 to the mouse
granulosa cells and the upregulation of LRH-1 expression
in rodent luteal cells. Because of the marked difference in
the mouse and rat promoter with respect to SF-1 function,
it will be interesting to determine whether StAR expres-
sion in rat/primate luteal tissue is regulated by LRH-1 and
whether or not this occurs in the mouse model.

The human and rodent StAR gene promoters also contain
cis elements that are responsive to CCAAT/enhancer-bind-
ing proteins (Cebp) that have been shown to regulate
both basal and cAMP-dependent StAR gene expression
[57,64,73,74]. Promoter analysis has also indicated that
over expression of Cebp and SF-1 had a synergistic effect
on cAMP-dependent StAR promoter activity [73]. LH and
cAMP analogs increase nuclear Cebp β (Cebpb) levels in
human granulosa-lutein cells [73] and in mouse granu-
losa cells luteinized in vivo (i.e., PMSG/hCG stimulation
protocol) [75]. The ability of Cebpb to regulate the StAR
promoter suggests that this protein may be the potential
StAR regulatory factor that is lost following cycloheximide
treatment of cells.

The identification of a GATA site in the StAR promoter led
investigators to test for its influence on StAR promoter
activity [64,74]. Electrophoretic mobility shift assays and
StAR promoter analysis demonstrated a positive role for
GATA-4 in basal and cAMP-dependent StAR promoter
activity. Since GATA-4 is constitutively expressed in
mouse granulosa cells, it would seem that this transcrip-
tion factor would likely only function in a permissive ver-
sus an obligatory role in the hormonal induction of StAR
gene transcription. However, recent studies have shown
that GATA-4 is activated by phosphorylation following
trophic hormonal stimulation and this is correlated with
StAR activation [76,77]. Additionally, these authors dem-
onstrated that GATA-4 and Cebpb cooperate to mediate
cAMP stimulation of the StAR promoter. While the exper-
iments described above have narrowed the field of candi-
dates mediating cAMP-regulated activity of the StAR
promoter, the details of how these factors function indi-
vidually or in concert remain to be elucidated and the role
these factors play in luteal steroidogenesis, particularly in

the two different luteal cell types remains to be
determined.

Numerous studies have demonstrated that in addition to
the major hormonal regulators of steroidogenic cell func-
tion, paracrine and autocrine factors influence StAR gene
expression [44], [55] and references therein. Some of
these factors amplify StAR gene expression (e.g., IGFs) and
others diminish expression (e.g. TGFβ, TNFα). The mech-
anisms by which these factors act to control StAR levels,
by and large, have not been elucidated but may encom-
pass transcriptional as well as post-transcriptional mecha-
nisms. Interestingly, progesterone was recently shown to
have a stimulatory effect on StAR gene expression in a
mouse Leydig cell line (MA-10) through a yet to be deter-
mined mechanism [78]. This mechanism does not require
classical progesterone receptors as MA-10 cells are devoid
of this receptor [78]. This observation is of particular
interest to those who study the corpus luteum, as Roth-
child predicted that progesterone production by the CL
was capable of stimulating its own synthesis as early as
1981. The subsequent identification of progesterone
receptors in primate luteal tissue [79] provided a plausible
mechanism for this to occur, and this recent finding sug-
gests yet another mechanism via which progesterone is
capable of modulating its own synthesis.

Posttranslational modification of StAR and 
interaction with other proteins
StAR was originally identified as a phosphoprotein and
mutation of a conserved serine195 phosphorylation site
resulted in approximately 50% reduction in steroid pro-
duction [80]. Phosphorylation of StAR is postulated to
play a role in the movement or targeting of StAR to the
outer mitochondrial membrane. This hypothesis is sup-
ported by the experimental observation that a N-terminal
deletion of StAR, which lacks the mitochondrial targeting
sequence when combined with a S195A mutation, exhib-
its no difference in pregnenolone synthesis when com-
pared to the "wild-type" N-62 StAR protein [81]. This
contrasts the >60% reduction in pregnenolone synthesis
detected with the full-length S195A mutant compared to
the wild type protein. Presently, the role of StAR phospho-
rylation in luteal function remains to be determined.

The mechanism by which StAR is able to increase the
transfer of cholesterol from the outer to the inner mito-
chondrial membrane has been the subject of many inves-
tigations [81,82]. Differing viewpoints on whether StAR
activity requires an interaction with other proteins, such
as the peripheral type benzodiazepine receptor (PBR)
exist [15,83,84]. Levels of PBR and StAR in isolated small
and large ovine luteal cells did not differ when expressed
on a per µg protein basis, however, the large luteal cells
exhibited 3-fold more endozepine, the natural ligand for
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PBR [15]. The mechanism by which endozepine influ-
ences PBR and/or PBR interaction with StAR is not known,
however, recently it was shown that StAR and PBR can be
closely associated in mitochondrial membranes [85].
Understanding how these two proteins interact in luteal
tissue, as well as determining the role endozepine plays in
cholesterol movement remains to be elucidated.

Luteal production of other steroids
Thecal cell distribution and the proportion of these cells
within the corpus luteum vary dramatically for different
species. In the primate CL, many of the thecal/small luteal
cells remain associated with the vascular tree and some of
these cells maintain their androgenic phenotype as evi-
dent by intense P450-17α immunolocalization and
androgen biosynthesis in culture [6,86]. In primates, the
CL also retains its ability to secrete estrogen throughout
the luteal lifespan; some of the large/granulosa-lutein
cells in the primate contain P450aromatase, thus indicat-
ing that the primate CL may retain the two cell-follicular
model of estrogen biosynthesis during the luteal phase
[86]. Interestingly, estrogen secretion by the primate ovary
does not appear essential for pregnancy as progesterone
replacement in ovariectomized women and monkeys
alone maintains pregnancy. Although the exact role for
luteal estradiol secretion is unknown, it was originally
postulated to be involved in luteolysis in the primate,
where the luteolytic process is independent of uterine
interaction. While the local luteolytic effect of estrogen
has been largely discounted, the presence of both estrogen
receptor α and β within primate luteal tissue supports a
local role for this steroid in luteal function [87]. Expres-
sion of aromatase by luteal cells declines during the late-
luteal phase paralleling the decline in luteal estrogen bio-
synthesis [3]. Recently, progesterone was shown to pro-
mote the survival of rat luteal cells by inhibiting apoptosis
and stimulating luteal cell androstenedione synthesis
[88]. Interestingly, androstenedione synthesis in the rat
also maintained luteal function and increased progester-
one biosynthesis [89]. The localization of the androgen
receptors and estrogen receptors within the primate and
rodent corpus luteum supports a role these steroids in
local luteal function [37,90]. The identification of genes
downstream of these transcription factors will be impor-
tant to clarify how these hormones regulate luteal
function.

Conclusion
Our understanding of luteal steroidogenesis in primate
species has made significant advances since the discovery
of StAR and its subsequent characterization in luteinizing
granulosa cells and luteal tissues. While it is clear that
StAR is involved in luteal steroidogenesis, the factors that
control it synthesis in luteal tissue are only now beginning
to be investigated. One of the more interesting observa-

tions by Rothchild more than 20 years ago was that pro-
gesterone secretion by luteal tissue appeared to perpetuate
its own synthesis. The subsequent discovery that the luteal
tissue contained progesterone receptors that might medi-
ate this progesterone response supported this hypothesis.
However, the more recent observations that progesterone
can itself stimulate StAR gene transcription, and that pro-
gesterone/androgens are capable of maintaining luteal
function in the rat (which lacks a classical progesterone
receptor) further supports this original hypothesis as well
as providing a possible explanation for this phenomena.
Recent technical advances combined with the large group
of investigators interested in understanding how the cor-
pus luteum of a diverse number of species develops and
functions, promises to provide us with many additional
exciting findings regarding luteal steroidogenesis in the
near future.
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