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Abstract
The corpus luteum is a unique organ, which is transitory in nature. The development, maintenance
and regression of the corpus luteum are regulated by endocrine, paracrine and autocrine signaling
events. Defining the specific mediators of luteal development, maintenance and regression has been
difficult and often perplexing due to the complexity that stems from the variety of cell types that
make up the luteal tissue. Moreover, some regulators may serve dual functions as a luteotropic and
luteolytic agent depending on the temporal and spatial environment in which they are expressed.
As a result, some confusion is present in the interpretation of in vitro and in vivo studies. More
recently investigators have utilized mutant mouse models to define the functional significance of
specific gene products. The goal of this mini-review is to identify and discuss mutant mouse models
that have luteal anomalies, which may provide some clues as to the significance of specific
regulators of corpus luteum function.

Introduction
The corpus luteum is an important byproduct of the ovu-
lating follicle. It is a transitory, hormonally regulated
organ that consists of a heterogeneous cell population.
Unlike the follicle, the different cell types are not segre-
gated into distinct compartments, but are highly inte-
grated. The steroidogenic cells synthesize progesterone for
the establishment and maintenance of pregnancy. Other
cell types include the endothelial cells and immune cells,
typically thought to play supportive roles. There is evi-
dence to suggest that the endothelial cells and the
immune cells play an active role in luteal formation,
maintenance and regression [1]. The vascular endothelial
cells make up a large portion of the corpus luteum,
whereas the immune cells vary in number dependent
upon the stage of the luteal phase or pregnancy [1-3].

Studies designed to elucidate the contributions of one or
more of the luteal cell types are often difficult to interpret.
More often than not these studies are based on in vitro cell
culture models. Primary cultures of dispersed luteal tissue
or enriched populations of specific cell types provide
some opportunity for investigators to delineate potential
signaling pathways, which may be engaged in response to
a specific stimulus. Outcomes derived from in vitro studies
are important but are often subject to criticism. For exam-
ple, in vitro studies tend to favor one cell type or another.
Moreover, the cell-cell interactions that are present in a
multidimensional environment in vivo are removed when
experiments are performed in a two dimensional field in
vitro (eg, tissue culture dish). What effect this has on an
outcome is not always fully appreciated and cannot be
directly extrapolated to the in vivo model. For example
prostaglandin F2α (PGF2α) is primarily considered a
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luteolytic agent in vivo, yet it has no direct lytic effect on
endothelial cells or steroidogenic cells in vitro [1,4,5]. This
raises a number of questions. Is the response observed in
vitro an artifact of the static culture systems most often
employed? Alternatively, are in vitro cultures lacking a
luteolytic agent found in vivo, or is cell-to-cell communi-
cation critical for the production of a luteolytic factor
present only in the in vivo environment?

Alternatives to the current in vitro and in vivo strategies are
necessary to fully understand the functional significance
of putative mediators of luteal development and regres-
sion. The development of various mutant mouse models
has provided an invaluable knowledgebase for defining or
possibly redefining the function and/or significance of
many gene products. The mutant mouse models, whether
they are hypermorphs, hypomorphs, conditional knock-
outs or true knockouts, provide a unique opportunity to
define function of the genes or their products. However,
these models have inherent caveats and have provided us
with a new list of disclaimers to help interpret the unex-
plainable findings. One such issue is redundancy. Often
times there are built in safeguards within a cell type or
alternatively there is system overlap to protect or compen-
sate for the loss of a particular protein. Therefore when a
protein is deficient, a gross phenotype is not always read-
ily evident. Alternatively, the significance of a particular
protein to corpus luteum function may be underestimated
when a loss of the protein results in embryonic lethality.
Of course this makes it very difficult to determine its func-
tion or significance in events that control the cyclic nature
of the mature female.

Some phenotypes are more controversial than others. The
'fertility' of female mice is subject to a number of biases.
Some investigators will claim that if a female delivers one
live offspring she is fertile. Others would argue that
because the average mouse litter size is 7–8 pups, a mouse
that delivers fewer than 7–8 pups has a fertility problem.
For practical purposes herein a reduction in litter size will
be described as sub-fertile. It is not so clear how to classify
mutant mouse models that display erratic estrous cycles,
because they may still be able to become pregnant and
deliver a normal size litter. Although mutant mice may
never reach the reproductive potential of their wild type
siblings, they do deliver pups and under a strict definition
of fertility they could be classified as fertile. In reality
though the reproductive potential of a number of female
mutant mice is sub-optimal suggesting that they are truly
less fertile than their wild type counter parts.

Mutant mice models are often generated to investigate
non-reproductive problems. Therefore, investigators who
are not directly engaged in a reproductive study or inves-
tigators not familiar with the reproductive field may miss

or dismiss a phenotype pertinent to reproduction. Repro-
ductive anomalies are not limited to reduced fecundity or
irregular estrous cycles, but include anovulation, hypoth-
alamic or pituitary defects, implantation defects, sub-opti-
mal hormone concentrations, and/or parturition defects.
This article provides a brief review of mouse models that
have defects affecting the development, function and
regression of the corpus luteum.

Mutant mice models with preovulatory/luteal 
development and/or luteal maintenance defects/
anomalies
It is important to recognize that in some mutant mouse
models ovarian follicles fail to ovulate (Table 1); yet, the
steroidogenic cells may undergo luteinization spontane-
ously or in response to exogenous gonadotropins result-
ing in a luteinized unruptured follicle. A number of
anovular phenotypes have been reported: gonadotropin
receptors: LH receptor, FSH receptor [6]; gonadotropins:
FSHβ subunit [7], glycoprotein hormone α subunit [8];
steroid hormone receptors: ERα [9], ERα/ERβ [10], PR
[11]: cell cycle regulatory proteins: cyclin D2 [12],
p27(kip) [13]; enzymes for steroidogenesis and prostag-
landin synthesis: aromatase [14], and COX-2 [15]. The
ability of steroidogenic cells to undergo luteinization nat-
urally would suggest that at least some signaling between
the pituitary-hypothalamic-ovarian axis is intact. Alterna-
tively, if luteinization does not occur, but is initiated only
with exogenous gonadotropins it can be predicted that
one or more signaling pathways have been interrupted.
For example, preovulatory follicles of cyclin-D2-/- females
undergo arrest and do not ovulate, however their granu-
losa cells undergo luteinization [16]. Similarly, inactiva-
tion of the type 4 cAMP specific phosphodiesterase
(PDE4D) gene results in infertile female mice. PDE4D is
critical for feedback regulation of cAMP levels and PDE4D
females have a high incidence of entrapped oocytes
within the follicles and yet the steroidogenic cells undergo
luteinization [17]. Another example includes the nuclear
corepressor Nrip1 (a.k.a. RIP140) -/- mouse which is infer-
tile [18]. The infertility stems from a failure of the follicles
to undergo maturation. As in the previous examples the
inability to ovulate is independent of the ability to
undergo luteinization [18]. Connexin 37-/- female mice
also fall into this category. Connexin 37 is normally
present in gap junctions between oocyte and granulosa
cells of the follicle and is critical for signaling [19]. Con-
nexin 37-/- female mice lack mature preovulatory follicles
and fail to ovulate. Despite the lack of ovulation, luteal-
like structures within the ovary displayed all the character-
istics of functional corpora lutea including high intracel-
lular lipid content, mitochondria with tubular cristae,
abundant smooth endoplasmic reticulum and numerous
capillaries [19]. Moreover, oocyte development arrested
in connexin 37-/- female mice before meiotic competence
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was achieved. Thus, cell-cell signaling through intercellu-
lar channels critically regulates the highly coordinated set
of cellular interactions required for successful oocyte
development and ovulation [19]. In contrast, it is not nec-
essarily obligatory for cell-cell signaling through intercel-
lular channels to induce luteinization.

There are also mutant mouse models, which provide indi-
rect evidence that luteinization can occur in the absence of
ovulation (Table 1). For example, female mice lacking the
gene for endothelial nitric oxide synthase (eNOS-/-) have
irregular estrous cycles and fewer pups per litter [20]. In
response to gonadotropin stimulation the eNOS-/- females
have a significant reduction in ovulatory efficiency com-
pared with wild type female, however there was no signif-
icant difference in plasma progesterone concentrations
[21]. It appears that the luteinization process is not inter-
rupted although ovulation rate is compromised. This dif-
ference may be due in part to unrecognized luteinized
follicles.

Collectively the mutant models with ovulation defects
described above provide evidence to suggest that luteini-
zation is independent of ovulation and that ovulation of
the oocyte is not obligatory for luteinization. There are
also examples of mutant mice which have an ovulation
defect but there is no evidence that the follicles undergo
luteinization (Table 1). One example is the Progesterone
Receptor (PRKO) and Progesterone Receptor alpha
(PRAKO) knockout mice. The importance of progesterone
derived from the corpus luteum in the establishment of
pregnancy is well accepted. However the pervasive impact
of progesterone on reproduction became more evident
with the development of the PRKO mice [11,22]. The
PRKO model was designed by targeting both the PRA and
PRB isoforms. The females develop normally, however
they have multiple reproductive defects including an ina-
bility to ovulate, uterine hyperplasia, limited mammary
development and an inability to exhibit sexual behavior
[22]. All of these symptoms likely contribute to their
reported infertility. The PRAKO mouse, generated by
selective ablation of the PRA gene [23], are also infertile.
Gonadotropin stimulation of PRKO and PRAKO mice
results in the development of follicles, however only
PRAKO mice ovulate. Pregnancy is not possible due a
defect in decidualization [22,23]. Collectively, the availa-
ble data indicate that progesterone is required for more
than just the establishment of pregnancy; it is required for
ovulation, a prerequisite for true CL formation. There are
no data provided to determine whether or not the unrup-
tured follicles become luteinized.

An additional example of an anovulatory mutant mouse
would include the estrogen receptor mutant mice. There is
no doubt that estrogen plays a significant physiological

role in folliculogenesis. Estrogen stimulates both granu-
losa cell proliferation and differentiation [24,25]. Estro-
gen is also responsible for the induction of follicle
stimulating hormone (FSH) and luteinizing hormone
(LH) receptors [24,26]. Estrogen binds both estrogen
receptors; ERα [27,28] and ERβ [29]. Both are expressed in
granulosa cells of preantral and antral follicles [25] and
have a highly conserved DNA binding domain [29]. ERα
is more prevalent in stromal and theca cells while ERβ is
predominant in antral follicles [30]. ERα knockout mice
(αERKO) females are acyclic, infertile and display
enlarged, hemorrhagic and cystic follicles with a high inci-
dence of ovarian tumors [10]. In contrast to the ERα
female mice, which are completely infertile, the ERβ null
mice females are subfertile. The ERβ-/- mice (βERKO) have
decreased ovulation rates, fewer litters, less pups per litter
and sparse corpora lutea. The double knockouts (αERKO
and βERKO) present with a phenotype similar to ERα
knockout [10].

Luteinizing hormone (LH), obviously by its name, is well
recognized as a luteotropic agent and is pivotal to mam-
malian reproduction. LH contributes to the maintenance
of gametogenesis and reproductive tract development in
the female [31-34]. Receptors for LH are found predomi-
nately in the ovary, but numerous reports over the past 15
years demonstrate expression of functional LH receptors
in numerous extra-gonadal tissues [33]. Mutations in
gonadotropin and gonadotropin receptor genes are very
rare [35,36], however, these mutations have helped to
define the physiology and pathophysiology of gonadotro-
pin action [37]. Targeted disruption of the LHR gene
causes infertility in both sexes [34,38-40]. Other pheno-
types include gross underdevelopment of internal and
external genitalia [38,40]. With respect to the mouse
ovary, the adult LHR-/- female displays small ovaries and
follicular development up to the preantral stage [40]. The
mutant mice had no discernable reductions in FSH recep-
tor or progesterone receptor mRNA [38]. Furthermore,
there was no apparent difference in the development of
the theca layer surrounding the developing follicle.
However, the theca in mutant mice displayed a marked
reduction in the expression of mRNA for P450 17-hydrox-
ylase [41] and steroidogenic acute regulatory (StAR) pro-
tein [38]. As a result steroid hormone levels were
markedly reduced, which can account for the observed
hypoplastic uterus and elevated gonadotropin levels
[38,41]. No evidence of preovulatory follicles or corpora
lutea are observed in the LHR-/- mice [38-40]. Injections of
PMSG, or injections of PMSG followed by hCG failed to
induce ovulation and luteal formation [38,39]. Addition-
ally, estrogen and progesterone replacement therapy
could not restore the ovulatory defect and fertility [38]. It
seems clear; therefore that development of antral follicles
to the ovulatory stage and luteinization of the ovulated
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follicle requires the actions of LH. Recent studies using the
LHR-/- mutant mouse model also provide evidence for
possible extra-gonadal roles for the LH receptor in uterine
morphogenesis [39].

Another example of where mutant mice display an inabil-
ity to develop corpora lutea includes the mice deficient in
CATT/enhancer binding protein (C/EBPβ) [42]. CATT/
enhancer binding protein (C/EBPβ) is expressed in granu-
losa cells of the ovary after LH stimulation, in vitro. Simi-
larly, C/EBPβ is expressed in granulosa and not thecal cells
of antral follicles derived from hCG treated wild type
females. C/EBPβ is not evident in the intact corpus luteum
in wild type mice suggesting a functional role for C/EBPβ
in the granulosa cells. This role is apparently lost or
severely down regulated during the luteinization of gran-
ulosa cells. The obligatory role of C/EBPβ is demonstrated
in the mice deficient in this protein [42]. C/EBPβ-/- female
mice fail to ovulate and therefore cannot initiate or main-
tain a pregnancy. There were no gross abnormalities in the
uterine tissue and uterine wet weights are similar between
the C/EBPβ-/- and wild type females. Marked differences in
ovarian function were observed when females were sub-
jected to gonadotropin-induced superovulation regime.
The heterozygous females ovulated an average of 30
oocytes whereas the C/EBPβ-/- females ovulated 3 to 6
oocytes. The ovaries of the C/EBPβ-/-females mice had evi-
dence of large, often hemorrhagic antral follicles which
were not evident in the wild type females [42]. These
observations suggest that there is a transition failure in
ovulation and luteinization. To verify that the infertility
was intrinsic to the C/EBPβ-/- ovarian phenotype, ovaries
deemed to be normal were transplanted to homozygous
null females and the infertility was resolved arguing that
the pituitary, hypothalamus and uterus were hormonally
responsive and intact. In contrast, corpora lutea never
formed when ovaries of mutant mice were transplanted
into normal females. Sterneck et al., [42] summarized that
the morphology of superovulated ovaries of C/EBPβ-/-

females were indicative that these mice lacked the neces-
sary mechanisms required to induce ovulation and sup-
port luteinization. The ovarian transplant experiments
further support the significance of C/EBPβ to luteal
formation.

The final example of a mouse model with an ovulation/
luteinization defect is the Large tumor suppressor
homolog 1 mutant mouse (Lats-1-/-) [43]. Lats1 is a tumor
suppressor originally identified in the Drosophila mela-
nogaster. Lats1-/- mice display infertility, growth retarda-
tion and lack of mammary gland development. They also
exhibit hyperplastic changes in the pituitary and
decreased serum hormone levels (i.e. LH, prolactin (PRL)
and growth hormone). Based on vaginal cytology Lats1-/-

mice do not exhibit an estrous cycle and remain in mete-

strus. The majority of the follicles are primary and second-
ary follicles with few follicles if any attaining antrum
formation. There is no evidence of CL formation. Gona-
dotropins stimulate estrous cyclicity, although is reported
to be prolonged [43]. It is not clear what phase of the cycle
is prolonged. Ovaries from Lats-1-/-females contain fewer
follicles than wild type females of the same litter. The
reproductive hormone defects of the Lat1 mutant mice are
similar to that LH-hypogonadotropic hypogonadism and
CL insufficiency in humans [43].

It is well recognized that luteinization of the steroidogenic
cells of the follicle marks a significant point whereby the
steroidogenic cells undergo hypertrophy and hyperplasia
only to be followed by cellular differentiation and a dra-
matic reduction in cellular proliferation. Concurrent with
this process there are significant changes in the levels and
actions of specific cyclins, their corresponding cyclin
dependent kinases, and cell cycle inhibitors (i.e. p27 and
p21). The cell cycle is regulated by cyclin interaction with
cyclin dependent kinases (CDKs) [44]. Progression
through G1 is regulated by the Cyclin D and E dependent
kinases. In the G1 phase type D cyclins bind and activate
CDK4 or CDK6. Cyclin E activates CDK2 in the late G1
phase. The CDKs can be inhibited by CDK inhibitors,
which are classified into two groups, Kip/Cip and Ink4
inhibitors. Kip/Cip family includes p21, p27 and p57. The
Ink4 inhibitor family includes p15, p16, p18 and p19
[44]. Many of the changes observed in these regulators of
cell cycle are believed to be mediated in part by hormones
also implicated in follicular growth, ovulation, luteal for-
mation/luteinization [45].

The significance of cyclins, CDK and their inhibitors
becomes readily apparent in the mutant mouse models.
FSH or bromo-cAMP failed to induce proliferation of
granulosa cells derived from cyclin D2-/- female mice
[12,16]. Moreover, the cyclin D2-/- female mice fail to ovu-
late, but undergo luteinization [12]. The p27-/- mice
exhibit a number of abnormalities including gigantism
with multi-tissue hyperplasia, benign adenomas in the
pituitary, and female infertility [46]. Of interest to this
review is the fact that granulosa cells in the ovary of p27-/

- mice continue to proliferate beyond the LH surge, sug-
gesting that p27 plays a critical role in establishing quies-
cence or differentiation of luteinizing granulosa cells.
Cyclin dependent kinase 4-/- mice are also infertile and
females exhibit prolonged estrous cycles [47,48].
Although the CDK4-/- mice develop corpora lutea, the pos-
tovulatory progesterone secretion is low and results in dis-
ruption of implantation. Progesterone supplementation
will reverse the defect indicating that the infertility is the
result of luteal dysfunction [47]. It is unclear whether
receptors for luteotropic agents or steroidogenic enzymes
are disrupted in CDK4-/- mice.
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Not all mutants are the product of human intervention.
Hypothyroid (hyt) mice are autosomal recessive for
hypothyroidism [49]. The hyt females display continuous
diestrous contributing to their infertility [50]. Stimulation
of immature female hyt and wild type mice with exoge-
nous gonadotropins will induce follicle development at
the same rate. However in gonadotropin stimulated
mature female hyt mice, the number of oocytes ovulated
were less than their wild type counterparts and pregnancy
is never achieved. Mature hyt females have significantly
fewer corpora lutea > 500 microns in diameter and signif-
icantly lower progesterone. Thyroxine treatment before
mating reverses the insufficiencies; the mice have well-
developed corpora lutea and progesterone levels are
increased [50].

Tissue inhibitor of metalloproteinase-1 (TIMP-1) has
been implicated as a potential regulator of steroidogenesis
[51]. This has been recently validated by evaluation of the
luteal phenotype of TIMP-1 mutant mice [51]. To validate
TIMP-1 functional significance to steroidogenesis in the
corpora lutea, wild type and TIMP-/- mice were treated
with eCG, followed by hCG to induce ovulation. Proges-
terone increased post hCG treatment in both genotypes,
however, the progesterone concentrations in TIMP-/- were
less than that observed in wild type mice. The lack of pro-
gesterone was not attributed to insufficient luteal forma-
tion since a similar number of oocytes were harvested
from both wild type and TIMP-/- mice suggesting a similar
number of corpora lutea were formed. Although the mean
mass of the corpora lutea in the two genotypes was not

Table 1: Summary of Reproductive Female Phenotypes in Mutant Mice models.

Mutant mice models with preovulatory/luteal development defects/anomalies
MUTANT REPRODUCTIVE PHENOTYPE REF
aCDK2 Infertile – Follicle arrest with granulosa luteinization; Gigantism with multi tissue hyperplasia and benign 

adenomas in the pituitary
[16,78]

bCDK4 Impaired postovulatory progesterone secretion and disruption of implantation [12,47,48]
cp27kip Ovulation defect; granulosa cells continue to proliferate after luteinization [46]
dPDE4D Infertile – Follicles with entrapped oocytes that undergo luteinization [17]
eNrip1 Infertile – Unruptured follicles; granulosa cells undergo luteinization [18]
fCon-37 Infertile – Mature oocytes fail to ovulate [19]
gPRLR Infertile – Fewer follicles, reduced ovulation, irregular cycles, reduced fertilization rates, defective 

preimplantation embryo development an lack the ability to initiate pseudopregnancy
[54]

hPRKO Infertile – Inability to ovulate, uterine hyperplasia, limited mammary development and inability to exhibit 
sexual behavior

[11,22,23]

iαERKO αERKO females are acyclic, infertile and display enlarged, hemorrhagic cystic follicles with a high 
incidence of ovarian tumors

[9,10,30]

jβERKO βERKO females are sub fertile, have decreased ovulation rates, fewer litters, less pups and sparse 
corpora lutea

[10,30,79]

kLHR Infertile – arrested follicular development at the early antral stage [38-40,80]
lLats – 1 Infertile-Growth retardation and lack of mammary development; Most follicles are primary and 

secondary; No evidence of corpora lutea formation
[43]

mC/EBPβ Infertile – Fail to initiate or maintain a pregnancy [42]
neNOS Irregular estrous cycle and reduced ovulation rate [20,21]

Mutant mice models with reduced luteal function
MUTANT REPRODUCTIVE PHENOTYPE REF
oHyt Infertile – Continuous diestrous [50]
pTIMP-1 Corpora lutea develop/sub-optimal progesterone [51]

Mutant mice models with delayed or disrupted luteal regression
MUTANT REPRODUCTIVE PHENOTYPE REF
qFP No regression of corpora lutea and fail to spontaneusly undergo parturition [59,60]
rCOX-1 Delayed parturition [57,58]
sCOX-2 Reduced ovulation rates, reduced fertilization rates, implantation and decidualization defects [15]
tlpr Irregular follicular development/corpora lutea undergo luteolysis at irregular intervals [71]
ugld Irregular follicular development/corpora lutea undergo luteolysis at irregular intervals [71]
vTNFR Increased number of ovulations, irregular estrous cycles, eventually get locked into a diestrous phase [67]
wCasp3 Delayed structural luteal regression, independent of decrease in progesterone [76,77]
xInsl3 Disrupted cycle length and increased ovarian apoptosis including follicles and corpora lutea [64]

List of acronyms or abbreviations: aCyclin dependent kinase 2, bCyclin dependent kinase 4, cp27(kip), dType 4 cAMP-specific phosphodiesterase, 
eNuclear receptor co-repressor Nrip1 (a.k.a. RIP140), fConnexin-37, gProlactin receptor, hProgesterone receptor, iαEstrogen receptor, jβEstrogen 
receptor, kLuteinizing hormone receptor, lLarge tumor suppressor homolog 1, mCCAAT/enhancer-binding protein β, nEndothelial nitric oxide 
synthase, oHypothyroid, pTissue inhibitor of metalloproteinase-1, qProstaglandin F2α receptor, rCyclooxygenase-1, sCyclooxygenase-2, 
tlymphoproliferation, ugeneralized lymphoproliferative disease, vTumor necrosis factor receptor, wCaspase-3, xInsulin-like factor 3
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reported, the weights of the ovaries from TIMP-/- mice
were significantly larger than their wild type counterparts
following gonadotropin stimulation [51]. These data pro-
vide evidence to support a significant role of TIMP-1 in
steroidogenesis.

Mutant mice models with luteal regression 
defects/anomalies
The prolactin receptor knockout mice provide some inter-
esting insights into luteal function and regression. Prolac-
tin (PRL) is a pituitary hormone recognized for its
luteotropic and luteolytic actions [52,53]. More specifi-
cally, prolactin regulates corpora lutea formation, ster-
oidogenesis, gonadotropin receptors and luteal demise in
rodents [52]. Therefore it is not unexpected that prolactin
receptor null mice (PRLR-/-) have multiple reproductive
anomalies. PRLR-/- mice have fewer follicles, reduced ovu-
lation, irregular cycles, reduced fertilization rates, defec-
tive preimplantation embryo development and lack the
ability to initiate pseudopregnancy. The length of the
estrous cycle does not appear to differ between the PRLR-/

- females and their wild type counterparts [54]. Moreover
the number of oocytes ovulated normally or in response
to gonadotropin stimulus were the same between the two
phenotypes [54]. These data suggest that PRL deficiency
does not affect the ovarian responsiveness to gonadotro-
pins. Corpora lutea form but display an elevated level of
apoptosis. Moreover, there is little evidence of PECAM/
CD31, an indirect index for vascularization. These data
suggest that the corpora lutea of PRLR-/- mice have reduced
vascularization [54]. Collectively, the reproductive anom-
alies observed in the PRLR-/- mice have been attributed to
impaired luteal function resulting in insufficient levels of
progesterone to support implantation.

Cyclooxygenase (COX) catalyzes the conversion of arachi-
donic acid into prostaglandin H2 (PGH2) a substrate
required for the generation of other prostaglandins
including PGF2α. Prostaglandin F2α is especially impor-
tant in the process of luteolysis [1-3,55]. The distribution
and varied levels of COX expression in different tissues
suggest that the biological actions of cyclooxygenase may
be tissue specific [56]. COX activity is considered a rate-
limiting step and disruption of COX activity and subse-
quent diminished prostaglandin levels was hypothesized
to have a significant negative effect on reproductive func-
tion. COX-1-/- female mice have multiple defects [57,58].
Of importance herein, the COX-1-/- mice have a delayed
parturition. In a normal pregnant wild type mouse there
is an increase in uterine PGF2α production on day 19
associated with luteolysis and parturition. This increase is
not evident in the COX-1-/- pregnant females [57,58].
Administration of PGF2α will reverse the parturition
defect. These data support an obligatory role for COX-1 in
parturition and hence luteal regression. The reproductive

defects displayed by COX-1 deficient mice are similar to
that displayed by FP-/- mice [59,60]. The COX-2-/- females
have evidence of disrupted ovulation, reduced fertiliza-
tion rates, implantation and decidualization defects
[15,58]. Simultaneous inhibition of COX-1 and COX-2
resulted in more severe effects than either isoform alone
[61].

Prostaglandin F2α has long been implicated as a primary
luteolytic agent, however the development of the PGF2α
receptor mutant mice (FP-/-) provides additional insight
into the overall significance of PGF2α to the regression of
the corpora lutea. Sugimoto and colleagues [59] demon-
strated that homozygous females cycled normally and
achieved pregnancy. Interestingly, FP-/- pregnant females
failed to undergo spontaneous parturition similar to that
observed in the COX mutant females [58]. There was no
decline in progesterone levels and no morphological evi-
dence of regression. Parturition could only be induced by
an ovariectomy on day 19; likely the result of a fall in pro-
gesterone levels. It is interesting that the effect on the cor-
pus luteum is limited to the corpora lutea of pregnancy.
There is no evidence that the lack of PGF2α signaling had
any effect on the corpora lutea of the estrous cycle or in
the corpora lutea formed in response to
pseudopregnancy.

The insulin-like factor 3 (Insl3), a member of the insulin-
like hormone family or relaxin family [62] is also impor-
tant for gonadal function. In the female, low amounts of
RLF (Insl3) are produced in both the uterus and ovary,
particularly in the theca cells of small antral follicle, where
expression of the hormone is correlated with the selection
of the follicles to become preovulatory [63]. In knockout
mice, there is a altered female phenotype, with disturbed
cycle length and increased ovarian apoptosis, particularly
in follicles and corpora lutea [64]. This was demonstrated
following the collection of ovaries from 40-day-old- and
6-month-old wild type and Insl3-/- mice littermates, which
were serially sectioned and assessed. It was determined
that the number of zonae pellucidae is higher in Insl3-/-

ovaries of both ages than in ovaries of wild-type sisters.
Wild type mice of both ages possess threefold more cor-
pora lutea than their Insl3-/- littermates. In general, wild-
type corpora lutea appear healthy, show GS I-positive
endothelial cells and no apoptotic cells whereas corpora
lutea from mutants are rich in regressing GS I luteal cells,
and an increased number of apoptotic cells. It was con-
cluded that follicular atresia and luteolysis are accelerated
in ovaries of Insl3-/- mice probably because of increased
apoptosis. The Insl3 function may provide survival signals
to rescue endocrine cells from the apoptotic pathway.

The overall impact of some reproductive phenotypes
exhibited in mutant mice is not so clear. For example if a
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mouse has irregular estrous cycles what exactly does that
mean? Is the irregular estrous cycle attributed to only dis-
rupted follicle development, delayed luteal development
or disruption of luteal regression or can it be a combina-
tion of all three. Examples of mutant mice models with
irregular estrous cycles other than those discussed above
would include the tumor necrosis factor receptor mutants
(TNFR1-/-), generalized lymphoproliferative disease (gld)
mutants and lymphoproliferation (lpr) mutant mice
(Table 1). Evidence for the involvement of TNFα in ovar-
ian function is provided in recent reviews [1,65,66] which
was further supported by Roby et al [67] who described
the reproductive anomalies associated with the TNFRI-/-

female mice. Prepubertal TNFRI-/- mice stimulated with
gonadotropins ovulate more ova compared to their wild
type controls. This increase in number of ovulations by
TNFRI-/- mice was associated with higher serum levels of
progesterone. The increased ovulatory response was lost
when the mutant females matured. At an early age the
TNFRI-/- female mice have the same length of estrous cycle
as their wild type counterparts. However the TNFRI-/-

females spent more time in diestrous than did the control
mice. By 6 months of age only 40% percent of the females
remained cyclic and those that did not cycle appeared to
be 'locked' into a diestrous phase. Also of interest was that
an increased number of TNFRI-/- females failed to deliver
and pups suggesting that there was a higher incidence of
infertility [67]. This study implicates TNFα as a critical reg-
ulator of luteal regression. These results are supported
indirectly by an earlier study in which anti-thymocyte
antiserum was injected in rats to inhibit immune function
[68]. Similar to the TNFRI-/- mice these rats failed to
progress past the diestrous phase. Although this study
does not directly implicate TNFα, it does provide addi-
tional support that the immune system plays an integral
role in the physical regression of the corpora lutea.

The homozygous gld mice have a non-functional Fas lig-
and (FasL) and lpr mice have reduced expression of FAS
(receptor) [69,70]. The corpora lutea of these mice
undergo luteolysis but at irregular intervals. Moreover
they have irregular follicle development. The lpr mice
have increased numbers of secondary follicles [71]. There-
fore it is not clear as to where the defect lies. Regardless,
these studies do provide evidence to suggest that FAS
mediated events are critical to the cyclicity of the female
mouse. FasL or FAS activating antibodies can induce luteal
cell death in the human, mouse, rat, and cow [71-75] and
induce luteal regression in wild type mice [71,76]. FAS-
mediated cell death results in the activation of caspase-3,
a primary effector caspase [76]. More interestingly, the
onset of FAS mediated cell death is attenuated in caspase-
3-/- mice when compared to wild type mice [76].

Carambula et al., [77] predicted that corpora lutea derived
from caspase-3-/- mice would exhibit a delayed onset of
apoptosis during luteal regression when compared with
corpora lutea derived from wild type mice. Upon exami-
nation of ovaries of wild type mice stimulated with gona-
dotropins only residual luteal tissue at day 6 post-
ovulation, ovaries collected from caspase-3-/- mice
retained many corpora lutea at day 6 post-ovulation that
were similar in size to those observed in the early luteal
phase of wild type mice. Notably, there was no dramatic
increase in apoptosis in corpora lutea of caspase-3-/- mice
at any time point examined post-ovulation, indicating
that luteal involution had been delayed. On the contrary,
the levels of progesterone declined regardless of genotype.
These data provide evidence that caspase-3 is functionally
required for apoptosis to proceed normally during luteal
regression. Moreover, these data suggest caspase-3 is not a
direct mediator of the decrease in steroidogenesis associ-
ated with luteolysis [77]. Using this same model it was
demonstrated that caspase-3 was downstream of PGF2α
and FAS mediated luteal regression [76]. Treatment with
PGF2α or Jo2 post-ovulation induced caspase-3 activation
and increased the number of apoptotic cells when com-
pared to IgG treated controls. In contrast, corpora lutea in
ovaries collected from caspase-3-/- mice, whether treated
with PGF2α, Jo2 or control IgG, showed little evidence of
active caspase-3 or apoptosis. Corpora lutea of wild type
mice treated with Jo2 had increased the caspase-8 activity,
an activator of caspase-3 that is coupled to the FAS death
receptor. Treatment of wild type mice with PGF2α or Jo2
resulted in a increase in caspase-8 activity in the corpora
lutea [76]. Based on these data it is suggested that luteoly-
sis, at least in part, can be mediated by increasing the bio-
activity or bioavailability of cytokines, such as FasL and
that multiple endocrine factors can activate caspase-3-
driven apoptosis during luteolysis [76].

Conclusions
A number of examples of mutant mice, which display a
luteal phenotype, have been provided (Table 1). Of these
there are those that fail to ovulate but undergo luteiniza-
tion, granulosa cells that continue to proliferate after
luteinization and those that never luteinize. Some mutant
mice develop corpora lutea but the level of progesterone
synthesized is not adequate to allow implantation or
maintain pregnancy. There are also mutant mice that dis-
play irregular estrous cycles, possibly due to a delay in
ovulation, luteinization or regression. It may be the cul-
mination of all three of these processes. Lastly, there are
mice which fail to undergo regression associated with
pregnancy or alternatively, there are mice that have
delayed structural regression irregardless of a decline in
progesterone. Collectively, these findings provide us with
predictable and not so predictable results. Some findings
add to the complexity and may contradict the more tradi-
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tional views. Regardless, a better understanding of the sig-
nificance of specific proteins and/or their receptors in
corpora lutea development, function and regression can
be gained from information obtained from mutant mice.
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