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Abstract
Condensation of sperm chromatin occurs after spermatozoa have left the caput epididymis and are
in transit to the cauda epididymis, during which time large numbers of disulfide bonds are formed.
The formation of these disulfide bonds requires the repeated oxidation of the cofactor, NAD(P)H.
To date, the means by which this oxidation is achieved has yet to be elucidated. Spermatozoa lose
the bulk of their cytoplasm prior to leaving the testis; and, as a result, any shuttle systems for
removing and transferring reducing equivalents into the mitochondria are unlikely to be
operational. In an apparent preparation for the loss of cytoplasm, however, the following events
occur during spermatogenesis. First, androgen-binding protein (ABP) is produced by the Sertoli
cells of the testis; second, high affinity binding sites for ABP are inserted into the membrane
surrounding the nucleus; and third, a nuclear location is acquired for the enzyme, 3α-
hydroxysteroid dehydrogenase (3α-HSD).

We propose that after the loss of cytoplasm, the nuclear region of spermatozoa is directly
accessible to constituents contained in the lumen of the caput epididymis. As a consequence,
luminal ABP attaches itself to the nuclear membrane via its binding sites, and is internalized. After
internalization, ABP exerts its principle function, which is to bind to luminal 5α-
dihydrotestosterone (5α-DHT), thereby ensuring its availability to the enzyme, 3α-HSD. In the
conversion of 5α-DHT to 3α-androstanediol (3α-Diol), NAD(P)H is oxidized. Spermatozoa that
reach the cauda epididymis have fully condensed chromatin. In addition, the nuclear region retains
appreciable amounts of 5α-DHT and 3α-Diol, both bound to ABP. During fertilization, the bound
3α-Diol is converted back to 5α-DHT, reducing equivalents are transferred to NAD(P)+, and
disulfide bonds are broken.

IVF clinics report that spermatozoa with incompletely condensed chromatin have a low percentage
of fertilization. If our proposed mechanism for chromatin condensation/decondensation is borne
out by further research, IVF clinics might consider preincubating spermatozoa with 5α-DHT in
order to increase the efficiency of fertilization.

Introduction
In eutherian mammals, the condensation of sperm chro-
matin has two main phases. The first phase, which occurs
in the testis, involves the substitution of somatic histones

by testis-specific protamines [1,2]. Protamines are small,
only half the size of the core histones they replace, and are
extremely basic. Between 55% and 70% of the amino ac-
ids are arginine. Sperm protamines also contain numer-
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ous cysteine residues, which are used to generate disulfide
cross-links between adjacent protamine molecules during
chromatin condensation. Bull sperm protamine contains
47 amino acids, with 24 arginine and 6 cysteine residues
[3]; and rat sperm protamine consists of 50 amino acids,
with 32 arginine and 5 cysteine residues [4]. Both pro-
tamine molecules are of sufficient length to fill one turn
of DNA, with adjacent protamines locked in place around
DNA by multiple disulfide bridges [3].

The formation of large numbers of disulfide cross-links
between protamine molecules describes what occurs in
the second main phase of chromatin condensation. These
cross-links are formed after the spermatozoa have exited
the caput epididymis and are in route to the cauda epidi-
dymis [5–9]. In the rat, the head region of spermatozoa
contains approximately 6.9 nMoles of sulfhydryl groups
(SH) + disulfides (SS) per million sperm, a figure which
remains constant throughout spermatogenesis [10]. Sper-
matozoa that are isolated from the caput epididymis con-
tain 84% of total SH + SS groups in the head region as
thiols; whereas, sperm heads from the cauda epididymis
contain only 14% of total SH + SS groups as thiols. This
difference indicates that during transit between the two
epididymides, almost 1.5 billion disulfide bonds are
formed per individual sperm. Therefore, it is not surpris-
ing that after chromatin condensation, sperm are highly
resistant to a variety of agents such as strong acids, pro-
teases, DNAse, and detergents [11]. The overall effect of
chromatin condensation is a transient inactivation of the
male genome [12].

Chromatin condensation is directly related to the capacity
of sperm to fertilize the ovum. For example, spermatozoa
from both the caput epididymis and the proximal corpus
epididymis lack the ability to fertilize; whereas, spermato-
zoa from the distal corpus epididymis and the cauda
epididymis have this ability [8,13,14]. Human spermato-
zoa in which the chromatin is not completely condensed
are also reported to have a low percentage of fertilization
[15]. In a recent study, human sperm that were incom-
pletely condensed failed to fertilize, even after their injec-
tion directly into the ovum [16]. Incomplete chromatin
condensation is independent of other causes of infertility,
such as abnormalities in sperm morphology (teratozo-
ospermia), low sperm count (oligospermia), or poor
sperm motility (asthenozoospermia) [17]. It has been
suggested that incompletely condensed sperm constitute a
significant factor in the assessment of male fertility [17].

In contrast to spermatogenesis, the process of fertilization
requires that disulfide bonds between protamine mole-
cules be broken. This occurs before chromatin deconden-
sation, pronucleus formation, and DNA synthesis [18–
21]. It has been proposed that glutathione, which is

present in the egg cytoplasm, provides the reducing equiv-
alents for the reduction of the disulfide bonds [18]. Under
in vitro conditions, heparin-reduced glutathione does
cause sperm decondensation [22]. The possibility that mi-
tochondria, located in the middle piece of the spermato-
zoan, might be involved in decondensation via a lactate/
pyruvate shuttle system [23] has also been considered.
However, when spermatozoa were treated with cyanide,
there was no effect on chromatin decondensation [24]. It
has also been suggested that chromatin decondensation is
the result of a trypsin-like, acrosomal protease that causes
a proteolytic degradation of sperm protamine [25].

There is no question that the oxidation and reduction of
sulfhydryl groups is critical to sperm chromatin condensa-
tion/decondensation. However, very little is known about
the processes, or whether each utilizes the same mecha-
nisms. The usual recipient for reducing equivalents is
NAD(P)+, which is reduced to NAD(P)H. Unless the nu-
clear region contains an unlimited supply of NAD(P)+, it
is critical that NAD(P)H transfer its reducing equivalents
to some other molecule. During the early stages of sper-
matogenesis, reducing equivalents can be transferred
from the cytoplasm into the mitochondria via shuttle sys-
tems [26,27]. However, spermatozoa lack cytoplasm, and
their mitochondria are located in the middle piece [28].
Without cytoplasm it is unlikely that spermatozoa can
transfer reducing equivalents from the head region to the
middle piece. It has been reported that spermatozoa con-
tain a membrane-bound NADPH oxidase for the transfer
of reducing equivalents [29,30]. However, it was also re-
ported that this NAD(P)H oxidase activity is insignificant
[31], which limits the likelihood of it being a substitute
for the shuttle systems. This leaves the question unan-
swered of how reducing equivalents are transferred in
spermatozoa. The unique structure of spermatozoa, rela-
tive to that of a typical cell, suggests that their pathway for
oxidizing NAD(P)H is unique as well. We previously re-
ported that the head region of sonication-resistant sper-
matids converts endogenous 5α-dihydrotestosterone (5α-
DHT) to 3α-androstanediol (3α-Diol) [32], a reaction in
which NAD(P)H transfers its reducing equivalents to 5α-
DHT. In our study, no cofactor was added to the incuba-
tion, indicating that endogenous NAD(P)H was the
source of the reducing equivalents. Evidence that sperma-
tozoa are also capable of this transfer is indicated by the
report that bovine spermatozoa convert 3H-DHT to 3H-
3α-Diol without added cofactor [33]. The remainder of
this paper will use published data to develop and describe
the putative role of the principle constituents in this
unique pathway for reducing equivalents.
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Hypothesis
Proposed mechanism for sperm chromatin condensation/
decondensation
The first constituent in the proposed mechanism is andro-
gen binding-protein (ABP). ABP is one of the major secre-
tory products of the Sertoli cells of the mammalian testis
[34–37]. In the rat, Sertoli cells secrete 20% of their ABP
across the basal membranes into the interstitial compart-
ment and 80% into the lumen of the seminiferous tubules
[38,39]. ABP is then transported via the rete testis and ef-
ferent ductales into the caput and caudal epididymides
[40–44]. During transit, the levels of ABP increase, and
then fall in the cauda epididymis [45]. For example, in
seminiferous tubule fluid the level of ABP is 40 nM; in rete
testis fluid it is 60 nM; in the lumen of the caput epidi-
dymis it is 265 nM; and, in the lumen of the cauda epidi-
dymis it is 65 nM. Biologically active ABP can be detected
in the serum of the male rat at 15 days of age [46,47].
However, after 40 days of age, the serum of the adult male
rat contains less than 0.2% of the ABP measured in testis
and caput epididymis [45]. In vitro and in vivo studies have
demonstrated that the synthesis and secretion of ABP is
regulated by androgens and FSH [48–50]. Testicular ABP
has been found in all species that have been examined.
The best characterized are rat, rabbit, and human ABP/
SHBG (steroid hormone binding globulin) [51]. Despite
testicular ABP being produced by the Sertoli cells and
plasma SHBG originating from hepatocytes [52], it is now
known that ABP and SHBG are encoded by the same gene
and share a number of identical amino acid sequences
[53–55].

It is generally accepted that one mole of ABP binds one
mole of steroid. Although there is some variation in ster-
oid specificity, ABP from most species binds DHT, T, estra-
diol-17-β (E2), and 5α-diol with high affinity. The
dissociation constant (Kd) of ABP for DHT is between 1.6
× 10-9 M and 0.8 × 10-9 M. Testosterone, E2, and 5α-diol
bind with lower affinities, but generally within one order
of magnitude of that of DHT [42,56–59]. ABP does not
appear to have any binding affinity for either androstene-
dione or progesterone.

Despite the extensive amount of data that have accumu-
lated on the ABP molecule per se, very little definitive in-
formation on its role in male reproduction has been
obtained. The underlying problem contributing to the
lack of knowledge is that there are no known natural mu-
tants in humans or animals where ABP is totally absent.
This suggests that ABP is extremely important for mam-
malian development (i.e., mutants are lethal), or con-
versely, it is of little or no importance. The latter would
appear unlikely considering the homology of sequence
and activity of mammalian ABP, irrespective of species
[51,59]. Early studies indicated that there is a correlation

between decreased levels of ABP and infertility in: the
pregnenolone-treated rat [60], the restricted rat [61], and
hamsters exposed to altered photoperiods [62]. A series of
papers by Huang et al. [48,63,64] indicated that the abili-
ty of spermatogenesis to produce viable sperm is closely
related to ABP levels.

Sertoli cell cultures enriched with germ cells (spermatogo-
nia, primary spermatocytes) undergo a doubling in the se-
cretion of ABP [65,66]. The increased secretion of ABP
requires FSH stimulation and the direct contact of the Ser-
toli cells with the spermatocytes. In 1984, Steinberger's
group [67] reported that rat spermatocytes contain specif-
ic binding sites for ABP. Pelliniemi et al. [68], using anti-
ABP antibodies, reported the presence of positive granules
within the cytoplasm of spermatocytes and spermatids.
Further use of the technique of immunocytochemistry has
shown that the intensity of immunoreactive ABP staining
and its intracellular localization in rat testis are dependent
on the stage of the spermatogenic cycle [69].

Using purified ABP complexed to 3H-testosterone, Gerard
et al. [70] demonstrated the endocytosis of ABP/SHBG by
coated vesicles in monkey germ cells. The ligand-ABP
complex was taken up by spermatogonia, spermatocytes,
and early spermatids. This group reported that late sper-
matids and sperm did not internalize the ABP/SHBG. In a
second study, using transmission electron microscopy
and autoradiography, Gerard et al. [71] examined the in-
ternalization of ABP by rat germ cells and found that ABP
was internalized by spermatocytes, round spermatids, and
elongated spermatids. It was also noted that the intracel-
lular site of ABP accumulation changed as the sperm ma-
tured. For example, labeling was most intense in nuclei
having the less condensed form of chromatin. A nuclear
location for ABP during the early stages of spermatogene-
sis suggests that it might play a role in transcription. Re-
ports that stage XI elongated spermatids contain the
androgen receptor [72], and synthesize mRNA [28], tend
to bear this out.

ABP has also been shown to be associated with sperm dur-
ing the later stages of spermatogenesis. For example, in an
investigation of the endocytosis of ABP by sperm, Felden
et al. [73], and Gerard [74] reported that rat germ cells
each have 12,000 to 13,000 binding sites for ABP. The
binding sites are a single class with a dissociation constant
(Kd) for ABP of 0.78 nM [74]. It was proposed that the en-
docytosis of ABP is receptor mediated and related to the
ABP binding activity previously identified on germ cell
plasma membranes [71]. This suggests that ABP may also
function in spermatogenesis as a steroid trans-membrane
carrier. While this has yet to be demonstrated, it has been
reported that tubules of the caput epididymis accumulate
3H-testosterone more efficiently from the luminal surface
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in the presence of ABP [75]. Others have suggested that
the function of ABP is to establish and maintain the high
androgen levels required for sperm maturation in the
epididymides [45]. High levels of immunoreactive ABP
have been found in the lumen of the initial segment of the
caput epididymis, where the protein is seen to be coating
both the spermatozoa and the brush border of the princi-
pal cells. Considerable staining is also observed in the ep-
ithelial cells, with the heaviest staining in the apical
portion of the cells. The heavy staining of spermatozoa
and epithelial cells in this region suggests a considerable
degree of endocytosis of luminal ABP. Very little immuno-
reactive ABP is detected in the epithelial cells of the distal
caput, corpus, and cauda epididymides [68].

The second constituent in the proposed pathway for trans-
ferring reducing equivalents is the enzyme, 3α-hydroxys-
teroid dehydrogenase (3α-HSD). This enzyme is believed
to exist to limit the levels of DHT and to aid in the meta-
bolic clearance of potent androgens. The clearance path-
way for androgens is understood to be: testosterone → 5α-
DHT → 3α-Diol glucuronide [76,77]. In humans, there
are 4 isoforms of 3α-HSD, all within the aldo-keto reduct-
ase (AKR) superfamily [77]. The isoforms are NAD(P)(H)-
dependent and convert 5α-dihydrotestosterone (17beta-
hydroxy-5alpha-androstan-3-one [5α-DHT]) to yield 5α-
androstane-3α, 17β-diol; [3α-Diol]). At present, different
isoforms of 3α-HSD have been found in liver, prostate,
mammary glands, uterus, brain, and skin [78,79]. In the
oxidation direction, only AKR1C2, which is found in the
brain, is able to convert 3α-Diol to 5α-DHT.

In the rat, there is a single form of 3α-HSD [80]. The re-
ported locations for 3α-HSD in the male rat are liver, scro-
tal skin, muscle, prostate, epididymis, and sonication-
resistant spermatids [32,80–82]. The epididymis of the
adult male rat converts 3α-diol to 5α-DHT [82], indicat-
ing that the single form of 3α-HSD is reversible.

The head region of sonication-resistant rat spermatids
converts endogenous bound 5α-DHT to 3α-Diol in the
absence of added NAD(P)H cofactor [32]. In addition,
bovine epididymal spermatozoa and ejaculated bovine
sperm convert 3H-DHT to 3H-Diols, also without added
cofactor [33]. This suggests that spermatozoa contain the
enzyme, 3α-HSD, and that it utilizes endogenous
NAD(P)H. It was also reported that 3H-DHT and 3H-Di-
ols become bound to bovine spermatozoa during incuba-
tion [33].

The large numbers of disulfide bonds that are formed dur-
ing chromatin condensation necessitate the repeated oxi-
dation of NAD(P)H. We believe oxidation occurs via the
transfer of reducing equivalents to 5α-DHT. The overall
process requires the concerted efforts of the enzyme 3α-

HSD, and ABP. Unlike 5α reductase, an enzyme found
primarily in spermatocytes [83,84], 3α-HSD is found in
spermatids [32], as well as in spermatozoa [33]. With 3α-
HSD localized in the nuclear region of the sperm [32], the
only limitation on the oxidation of NAD(P)H is the avail-
ability of 5α-DHT, which is the responsibility of ABP. The
nuclear region of each spermatozoan is enclosed by a
membrane that has 12,000 to 13,000 high affinity bind-
ing sites for ABP [73,74]. These ABP binding sites come
into play after the loss of cytoplasm and the spermatozoa
have entered the caput epididymis. Here, immunoreactive
ABP can be seen covering the spermatozoa [69]. The bind-
ing and internalization of ABP, as well as the subsequent
delivery of 5α-DHT, is facilitated by the extremely high
levels of both ABP and 5α-DHT, which in the caput epidi-
dymis are 265 nM and 200 nM, respectively [45]. The ob-
servation that ABP is not found in epithelial cells of the
distal caput, corpus, and cauda epididymides [68], sug-
gests that the internalization of ABP is limited to the prox-
imal caput epididymis.

We have examined the head region of spermatozoa, iso-
lated from the cauda epididymis for the presence of
bound androgens, and detected 3α-Diol (1344 pg/mg
DNA) and 5α-DHT (385 pg/mg DNA) [85]. Both andro-
gens were tightly bound to the head region and remained
there even when spermatozoa were isolated from the cau-
da epididymis of male rats that had been castrated three
days previously. The obvious tenacity of the head region
for these two androgens is very likely due to ABP. Evi-
dence for the continued presence of ABP in mature sper-
matozoa can be provided by calculating the theoretical
levels of bound androgen, and comparing this figure with
the actual levels of bound androgen. Since the nuclear re-
gion of each spermatozoan contains 3.5 pg DNA [85], and
has between 12,000 to 13,000 binding sites for ABP
[73,74], the theoretical level of bound androgen would be
between 1650 pg/mg DNA and 1790 pg/mg DNA. The
measured levels of 3α-Diol and 5α-DHT were 1344 pg/
mg DNA and 385 pg/mg DNA, respectively, or a total of
1729 pg/mg DNA [85].

In the formation of disulfide bonds, NAD(P)H has to be
repeatedly oxidized. During fertilization and the dissolu-
tion of disulfide bonds, the reverse occurs, and NAD(P)+

has to be repeatedly reduced. If chromatin decondensa-
tion utilizes the mechanism of chromatin condensation,
but in reverse, then this will occur through the transfer of
reducing equivalents from 3α-Diol to NAD(P)+. We have
found that the 3α-Diol bound to the head region is con-
sistently 3 fold that of bound 5α-DHT [85], indicating
that 3α-HSD is functioning as a reductase. For the enzyme
to operate in the reverse direction, it is likely that activa-
tion by an external source is required. This activation
could be in the form of a female sex hormone, such as es-
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trogen or progesterone. Progesterone is known to act on
the sperm to induce capacitation [86]. It could also cause
3α-HSD to function as an oxidase. There are approximate-
ly 10,000 molecules of 3α-Diol per spermatozoan [85].
This number would produce less than 1% of the reducing
equivalents needed to break all disulfide bounds. Still,
enough bonds could be broken to allow reduced glutath-
ione, contained in the cytoplasm of the ovum [18], to
penetrate the chromatin and affect the dissolution of the
remainder of the disulfide bonds.

It has been suggested that glutathione is an intermediary
in sperm condensation [29]. If this is indeed the case, re-
ducing equivalents still need to be transferred, for which
our proposed mechanism is applicable.

Testing the proposed mechanism for sperm chromatin 
condensation
The literature contains a number of reports that tentative-
ly support our proposed mechanism. For example, a re-
duction in androgen levels in the lumen of the caput and
cauda epididymides is correlated with decreased numbers
of disulfide bonds in spermatozoa [87,88]. In addition,
there is a significant correlation between ABP levels and
sperm fertilizing ability in the pregnenolone-injected rat
[60] and the restricted (Hre) rat [89]. In both experimental
animals, decreased levels of ABP caused a defect in sperm
quality, but had no affect on sperm quantity. While these
studies provide supportive evidence, the best way to vali-
date the proposed mechanism is to demonstrate that the
formation of disulfide bonds in caput epididymal sper-
matozoa is completely dependent upon the conversion of
5α-DHT to 3α-Diol.

Significance of the proposed mechanism for sperm chro-
matin condensation
Knowledge of the actual mechanism of chromatin con-
densation/decondensation is important to the field of re-
productive endocrinology. For example, if 5α-DHT is
found to be the recipient of reducing equivalents during
chromatin condensation, IVF clinics might consider pre-
incubating spermatozoa with 5α-DHT in order to increase
the efficiency of fertilization.
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